

Quantum Computer Datasheet

Published May 14, 2021

Description

At the core of Google's Quantum Computing Service is the Sycamore processor. It has up to 54 superconducting qubits in a square grid lattice suitable for general Noisy Intermediate Scale Quantum (NISQ) algorithms like Hartree-Fock (chemistry), QAOA (optimization), and machine learning. Standard single- and two-qubit gates are calibrated, and both individual and simultaneous readout are supported.

54-qubit Sycamore processor

1

-

Features

Qubits

Grid	Square lattice		
Туре	Universal gate-based quantum processor		
User sessions	Open swim OR dedicated reservations		
Single Qubit gates	Standard + arbitrary XY rotations		
Two Qubit gates	√iswap and Sycamore		
Readout	Isolated or simultaneous		
Repetition Rate	1-5 kHz typically, up to 15 kHz		

Qubit Operations

Туре	Gate	Duration ¹	Matrix
	Phased XZ	25 ns	<pre>cos(πx/2) -isin(πx/2)e^iπa -isin(πx/2)e^iπ(a+z) cos(πx/2)e^iπz</pre>
_	Virtual Z	0 ns	[1 0 0 e^(iπt)]
	Physical Z	20 ns	[1 0 0 e^(iπt)]
	Sycamore	12 ns	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -i & 0 \\ 0 & -i & 0 & 0 \\ 0 & 0 & 0 & e^{(-i\pi/6)} \end{bmatrix}$
Two Qubit Gates	√iSWAP	32 ns	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \pm 1/\sqrt{2} & \pm 1/\sqrt{2} & 0 \\ 0 & \pm 1/\sqrt{2} & \pm 1/\sqrt{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
	CZ	In development	1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 -1

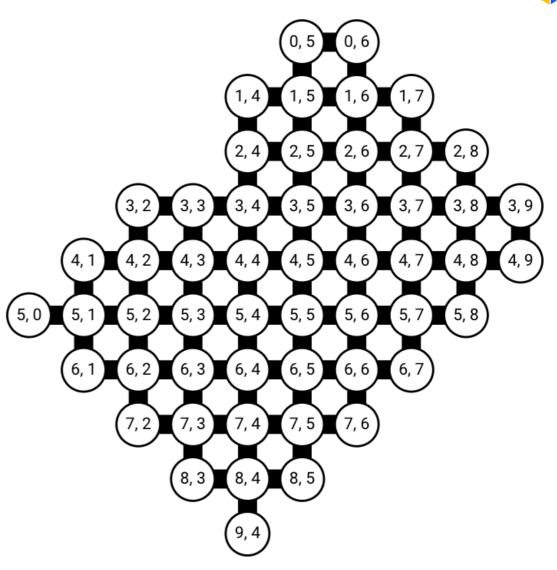
Readout

Total	4 µs
Ringdown	3 µs
Integration	1 µs

System Timing

Туре	Condition	Low ²	Typical ³	High⁴	Unit
	Single circuit, 2k reps	0.2	0.3	0.3	kHz

Repetition Rate	Single circuit, 20k reps	1.9	2.1	2.1	kHz
	25 sweeps, 2k reps each	1.1	1.1	1.1	kHz
	25 sweeps, 20k reps each	4.0	4.1	4.1	kHz
Latency		1.6	2.3	2.8	seconds


- ¹ All gates in a cirq.Moment will happen simultaneously and will have the duration of the longest gate.
- ² 10th percentile value from the combined distribution of all post-calibration characterizations of all qubits from Jan Mar 2021
- ³ Median value from the 90-day distribution of median values of all qubits from Jan Mar 2021
- ⁴ 90th percentile value from the combined distribution of all post-calibration characterizations of all qubits from Jan Mar 2021

Weber Quantum Computer

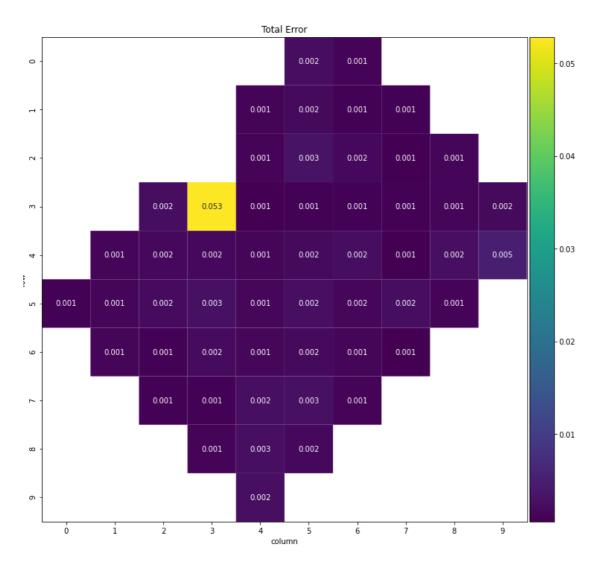
Qubit Grid

processor_id	Weber
Family	Sycamore
Supported two-qubit gates	√iswap, Sycamore
Number of qubits in the grid	53
Qubit Layout	

Example grid for Weber. <u>Use QCS Console</u> for up-to-date layout.

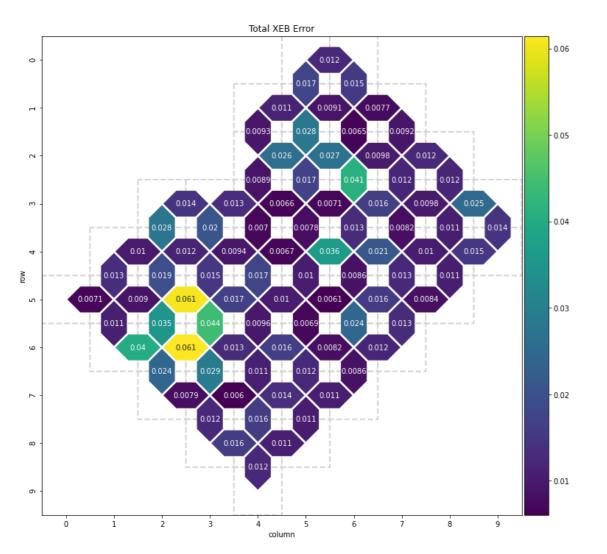
Performance

Metric	Symbol	Condition	Low ¹	Typ ²	High ³	Units	Description
Single-qubit gate error rate	e 1	Isolated	0.1	0.1	0.2	% error per gate	Randomized benchmarking
Two-qubit gate error rate (√iswap) e2 (√iswap)		Isolated	0.7	0.9	1.9	% error per gate	Cross-entropy benchmarking (XEB)
	Parallel	0.8	1.4	3.3	% error per gate	Cross-entropy benchmarking	
Readout error 0)		Isolated	0.5	1.1	2.6	% error	Confusion matrix: prepare 0} and observe 1}; includes state prep error
	er0	Simultaneous	1	2	3	% error	Confusion matrix: prepare 0} and observe 1}; includes state prep error
Readout error 1>	€r1 -	Isolated	3	5	9	% error	Confusion matrix: prepare 1} and observe 0}; includes state prep error
		Simultaneous	3	7	9	% error	Confusion matrix: prepare 1 > and observe 0 >; includes state prep error
Relaxation	T1	Isolated	11	15	21	μs	Direct measurement of 1) population relaxation


- ¹ 10th percentile value from the combined distribution of all post-calibration characterizations of all qubits from Jan Mar 2021
- ² Median value from the 90-day distribution of median values of all qubits from Jan Mar 2021
- ³ 90th percentile value from the combined distribution of all post-calibration characterizations of all qubits from Jan Mar 2021

Performance Heat Maps: Gates

Reminder to users: check the latest characterization report in the GCS Console.

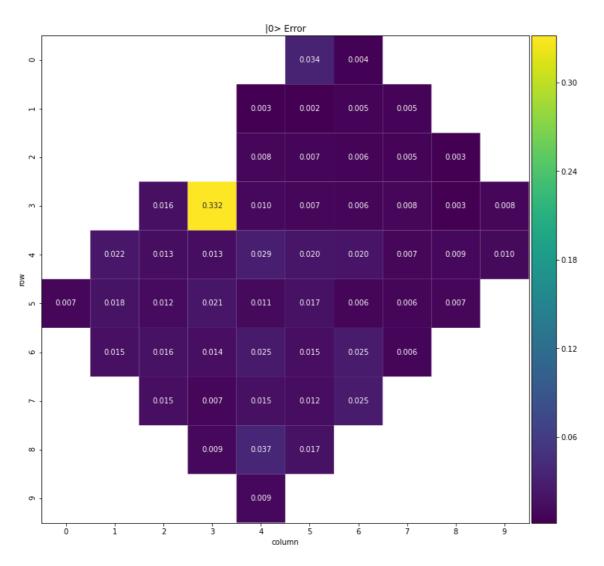

Representative Characterization Metrics¹

Single Qubit Total Randomized Benchmarking (RB) Error

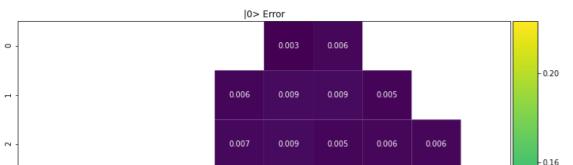
Total XEB Error Total XEB Error

Two Qubit Parallel Total XEB Error √iswap gate

Two Qubit Isolated Pairs Total XEB Error √iswap gate


¹ These characterization metrics were taken on 04/23/2021, and the average performance over all qubits (or pairs) is close to the typical performance metrics.

Performance Heat Maps: Readout


Reminder to users: check the latest characterization report in the GCS Console.

Representative Characterization Metrics¹

Isolated |0) Readout Error

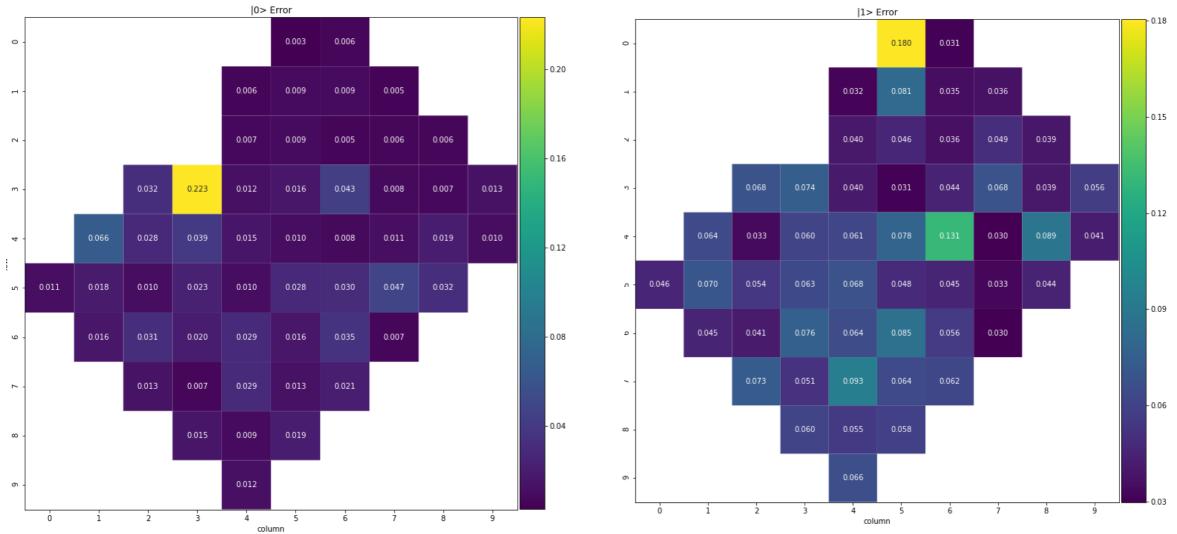
Simultaneous All Qubits |0) Readout Error

|1> Error 0.132 - 0.12 - 0.10 0.08 5 0.040 ŝ 9 0.06 0.134 5 0.048 - 0.04 œ б

Isolated |1) Readout Error

4

column


5

6

ż

i

ż

1 These characterization metrics were taken on 04/23/2021, and the average performance over all qubits (or pairs) is close to the typical performance metrics.

Performance Histograms

Reminder to users: check the latest characterization report in the GCS Console

Representative Characterization Metrics¹

Gate Errors Readout Errors N=53 N=86 1.00 1.00 0.75 0.75 Integrated histogram 0.50 0.50 0.25 0.25 Isolated |0> Error Isolated |1> Error SQ total error Simultaneous |0> Error Isolated sqrt_iswap Simultaneous |1> Error Parallel sqrt_iswap 0.00 0.00 10-2 10^{-1} 10⁻³ 10-2

6

¹ These characterization metrics were taken on 04/23/2021, and the average performance over all qubits (or pairs) is close to the typical performance metrics.