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Quantum-information-inspired experiments in nuclear magnetic resonance spectroscopy may yield
a pathway towards determining molecular structure and properties that are otherwise challenging
to learn. We measure out-of-time-ordered correlators (OTOCs) [1–4] on two organic molecules
suspended in a nematic liquid crystal, and investigate the utility of this data in performing struc-
tural learning tasks. We use OTOC measurements to augment molecular dynamics models, and
to correct for known approximations in the underlying force fields. We demonstrate the utility of
OTOCs in these models by estimating the mean ortho-meta H-H distance of toluene and the mean
dihedral angle of 3’,5’-dimethylbiphenyl, achieving similar accuracy and precision to independent
spectroscopic measurements of both quantities. To ameliorate the apparent exponential classical
cost of interpreting the above OTOC data, we simulate the molecular OTOCs on a Willow supercon-
ducting quantum processor, using AlphaEvolve-optimized [5] quantum circuits and arbitrary-angle
fermionic simulation gates. We implement novel zero-noise extrapolation techniques based on the
Pauli pathing model of operator dynamics [4], to repeat the learning experiments with root-mean-
square error 0.05 over all circuits used. Our work highlights a computational protocol to interpret
many-body echoes from nuclear magnetic systems using low resource quantum computation.

Accurate molecular structure determination is key to
probing structure-function relationships in many areas
of chemistry and biology. Nuclear Magnetic Resonance
(NMR) spectroscopy provides access to structurally rich
information embedded within couplings between pairs of
spins [6]. Dipolar couplings in solid-like systems pro-
vide the most direct access to geometric information.
However, the complex spin dynamics generated by these
terms increases the challenge of observing [7] and in-
terpreting [8, 9] an information-containing signal. Cur-
rent techniques to overcome these challenges [10–14] fo-
cus on reducing the effective system size to one or a few
spins, where signals remain large and interpretable. This
has been pivotal in structural elucidation efforts, rang-
ing from model systems in solid state [15, 16] and liq-
uid crystal [17, 18] to complex, biologically relevant tar-
gets such as amyloid fibrils[19, 20] and SARS-CoV-2 [21].
A methodological gap remains however, as these tech-
niques limit the maximum measurable distance between
pairs of spins (e.g. C-C distances are limited to around
∼6Å. [22]), and longer-range distance constraints remain
more challenging to estimate.

Efficient simulation of many-body spin dynamics, such
as in NMR [23–29], has been suggested as an application
for quantum computers. For quantum applications, one
targets observables that do not concentrate [30–32] and
that are sensitive to microscopic system details [4]. In
this work, we propose that this sensitivity is relevant to
the NMR practitioner, as quantum-information-inspired
experiments could provide access to long range structural
information. Recent efforts have demonstrated quantum
advantage in the estimation of out-of-time-ordered corre-
lators (OTOCs) [1, 2, 33] on superconducting quantum
hardware [4]. The OTOC experiment is based on a many-
body echo, in which polarization initially localized on a
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target spin migrates through the spin network, before
a Hamiltonian-engineered time-reversal refocuses to the
initial state. This refocusing is sensitive to perturbations
on distant butterfly spins, which allows one to measure
the extent of polarization propagation through the spin
network [Fig. 1(a-b)]. We suggest this may help to fill
the aforementioned NMR methodological gap.

Herein, we demonstrate a pathway towards de-
termining otherwise challenging-to-compute molecu-
lar structure and properties via a hybrid technique
of NMR spectroscopy and digital quantum simula-
tion [Fig. 1(c)]. We measure OTOCs generated by
Hamiltonian-engineered pulse sequences on 13C-labeled
organic molecules, [4-13C]-toluene and [1-13C]-3’,5’-
dimethylbiphenyl (DMBP), which we suspend in liq-
uid crystal solvents to suppress intermolecular couplings
while partially retaining intramolecular through-space
dipolar terms. We compare experimentally obtained
OTOCs from toluene to classical simulations using ref-
erence data, and illustrate the sensitivity of OTOCs to
molecular structure by simulating stretching the molecule
between the ortho and meta carbon atoms, yielding an
interpretable NMR signal. To alleviate the exponential-
scaling simulation cost of this approach, we repeat the
above analysis on superconducting quantum hardware.
We compile a Trotterized approximation of the all-to-
all dipolar Hamiltonian evolution to a swap network of
arbitrary-angle fermionic simulation (fSim) gates, and
develop novel error mitigation techniques based on the
Pauli-path picture of operator dynamics to recreate the
learning experiment with high accuracy. Next, we
demonstrate a DMBP structure learning protocol by
combining NMR OTOC data with a realistic model ob-
tained through classical molecular dynamics to estimate
the distribution of the dihedral angle between the two
phenyl rings. We use the AlphaEvolve coding agent
to optimize product formula generation, and implement
the resulting circuits on the quantum device. We com-
pare the resulting estimates of the dihedral angle dis-
tribution against multiple quantum coherence (MQC)
spectroscopy data from an independent DMBP sample
with deuterated methyl groups, experimentally validat-
ing the OTOC learning protocol through a secondary
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FIG. 1. Making a longer molecular ruler with an out-
of-time-ordered correlator (OTOC). a,b) A comparison
between conventional spin transport measurements that infer
distance restraints from single couplings, and OTOCmeasure-
ments, which probe the growth of large quantum coherences
through the H spin network. By utilizing all the couplings
in the spin network, the OTOC is not limited in distance by
the 1/r3 scaling that limits the distances measurable by con-
ventional techniques. c) Our proposal to use a quantum com-
puter to assist in processing OTOC (or other challenging-to-
classically-simulate) data from a large spin cluster. Following
nuclear magnetic resonance (NMR) data collection, the quan-
tum computer provides an artificial system that is iteratively
tuned —via classical feedback— until it matches experiment.

unscalable spectroscopic approach. The combination of
careful hardware error-mitigation, algorithmic compila-
tion strategies, and physical chemistry model construc-
tion demonstrates the potential of scalable quantum-
information-inspired experiments to augment traditional
NMR data used for structure determination.

RESULTS

We illustrate in Fig. 2(a-b) the encoding of long-
range correlations in an NMR experiment using a
sample of [4-13C]-toluene in N-(4-Ethoxybenzylidene)-
4-butylaniline (EBBA) liquid crystal as a benchmark
system with externally determinable molecular struc-
ture. We perform experiments using the newly-
developed Time-Accurate Reversal of Dipolar Interac-
tionS (TARDIS) pulse scheme, that engineers an effec-
tive double-quantum Hamiltonian to propagate informa-
tion between the x-polarized 13C “measurement” spin

and the methyl proton “butterfly” spins. Due to symme-
tries in the double-quantum Hamiltonian, the TARDIS
sequence is approximately invertible, allowing us to re-
focus the propagated information back to the 13C spin,
which is reflected in the amplitude of the free induction
decay (FID). In the absence of any perturbation between
forward and backward evolution this sequence performs
a Loschmidt Echo (LE) on the system [Fig. 2(c), yellow].
In principle this LE sequence should yield a constant sig-
nal, corresponding to perfect refocusing. The observed
decay is partially due to higher order Hamiltonian terms
in the static effective expansion that are imperfectly refo-
cused, and partially due to inhomogeneities in the applied
radio frequency (RF) field across the NMR sample (see
Supplementary Information for detailed modeling).
To determine the information spread through the

toluene molecule during forward evolution, we apply a
“butterfly” unitary operation on the methyl group be-
fore refocusing. This yields an OTOC [Fig. 2(c), red],
which in the absence of error takes the functional form

C(t) = Trace[X13C(t)BX13C(t)B
†], (1)

where X13C(t) = U(t)X13CU
†(t) is the forward-evolved

measurement operator. At short times the 13C spin re-
mains undisturbed by the distant butterfly; the OTOC
matches the LE. However, as the spin spreads across the
system the butterfly effect grows, and the OTOC de-
cays faster than the LE. This decay is characteristic of
all OTOCs: the information from the measurement spin
propagates with a diffusive front, and causes decay upon
reaching the butterfly.
The onset and rate of the OTOC decay depends on

the dipolar couplings, enabling determination of a model
molecular structure corresponding to the thermal average
of all molecular configurations. Due to the simplicity and
symmetry of toluene, this average structure can be well
approximated by a rigid phenyl ring and a freely-rotating
methyl group [34]. The liquid crystal environment can be
accounted for by an orientational order parameter. We
model OTOCs generated by the exact TARDIS pulse se-
quence, and include independently-measured RF inho-
mogeneity. Then, for illustrative purposes, we can sim-
ulate an artificial stretching of the molecule between the
ortho- and meta- positions [Fig. 2(d), inset], measured by
the ortho-meta H-H distance zom. This affects the OTOC
decay strongly [Fig. 2(d)]: we observe that a stretch or
contraction of 0.5Å shifts the OTOC by up to 20%. The
direction of this shift is counterintuitive: decreasing zom
(which increases coupling strengths) slows the OTOC at
later times. We explain this observation in the Supple-
mentary Information.
To turn the OTOC sensitivity into a tool for learning

molecular structure, we construct a cost function to min-
imize over our target parameter zom. In Fig. 2(e) we plot
the covariance-weighted error to the data from Fig. 2(c)
and 4 other datasets generated by engineering an on-
site field (see Supplementary Information). Performing
a cubic fit and bootstrapping error bars, we obtain an
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FIG. 2. Benchmarking the structural sensitivity of out-of-time-ordered correlators (OTOCs) in [4−13C]-toluene.
a) Description of the OTOC protocol (top) as implemented in a nuclear magnetic resonance (NMR) spectrometer (bottom).
b) Cartoon showing the spread of the spin cluster through the molecule following the sequence in a). c) OTOC (red) and
Loschmidt echo data (yellow) from the NMR experiment. Points show NMR experiment data with 1σ confidence intervals
(CI), compared to numerical simulations (lines). d) Sensitivity of the OTOC experiment to an artificial stretch of benzene
between the ortho and meta carbon atoms (inset), with experimental data from b) overlaid (red). e) Simulated learning of
the ortho-meta H-H distance zom from OTOC data. (top) Red triangles show the covariance weighted mean error between
simulation and NMR experiment, line shows a cubic fit with 1σ CI shaded. (bottom) Estimate of zom (red) compared to
reference data from the literature (gray), with bootstrapped 2σ CI.

estimate zom, c = 2.47± 0.01 Å. This agrees with the ref-

erence value zom, r = 2.46 ± 0.01 Å [34] to within error
bars, and shows comparable precision to this reference
data. We caution however that this fits only a single pa-
rameter of the entire toluene molecule, whilst Ref. [34]
fits the entire molecular structure.

The classical hardness of OTOC simulation prevents
scaling our structure learning protocol to larger sys-
tems of chemical and biological interest using classical
post-processing alone. We ameliorate this issue by effi-
ciently simulating the strongly correlated dipolar cou-
pling Hamiltonian on superconducting quantum hard-
ware, implementing the scheme envisaged in Fig. 1(c).
Compared to established applications in quantum simu-
lation of electronic structure, OTOC simulation is a rela-
tively low-cost application for quantum computers due to
short scrambling timescales, low measurement complex-
ity, and large error tolerances. However, the all-to-all-
coupled dipolar spin Hamiltonian is challenging to sim-
ulate compared to local spin models, due to the large
number of terms. To solve this problem, we implement a
first-order Trotterization [35] of the lowest-order Magnus
expansion of the full TARDIS sequence, working in the
interaction picture [36] on the 13C-para-H coupling, and
neglecting all other C-H couplings. We compile the H-
H interactions into a swap network [37], and implement
the resulting fSim gate in an individually calibrated two-
pulse scheme [Fig. 3(a)]. The resulting circuits use up to

1080 2-qubit pulses to simulate the first six time steps of
the toluene OTOC curve. We further develop a physi-
cally motivated zero-noise extrapolation scheme [38, 39]
based on the effect of noise in the Pauli-path OTOC pic-
ture [4, 26].

In Fig. 3, we repeat the sensitivity experiment across
the range of zom shown in Fig. 2(c), but replacing
the classical computation with quantum simulation per-
formed on aWillow device. We observe that the quantum
device is able to qualitatively replicate the OTOC decay
across the zom range considered. Comparing our hard-
ware to the classical simulation of Fig. 2(c), we find a
root-mean-square error between the quantum and clas-
sical datasets of ϵtot = 0.058. This is made up of algo-
rithmic error (i.e. Trotter error) in the quantum circuit
(ϵalg = 0.035) and residual experimental bias after mit-
igation (ϵexp = 0.050). In the Supplementary Informa-
tion, we provide detailed budgeting of the algorithmic,
NMR, and quantum computer error sources. Motivated
by the accuracy in replicating the OTOC decay on quan-
tum hardware, we reproduce the covariance-weighted er-
ror curve [Fig. 3(c), blue], and re-estimate the ortho-meta
C-C bond length. We observe that the dip remains, and
obtain an estimate zom, q = 2.44 ± 0.04 Å, which suffers
a small loss of precision, but continues to agree with the
reference data within experimental error. To separate
the effect of the reduced dataset from the algorithmic
and experimental error, we repeat this plot using the ac-
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FIG. 3. Alleviating the exponential cost of out-of-time-ordered correlator (OTOC) simulation with a quantum
computer. a) Approximating nuclear spin evolution on superconducting quantum hardware. A Trotterized digital quantum
simulation of the double quantum Hamiltonian is executed by compiling individual couplings with swap gates that permute spin
indices. The compiled gate is executed using a pulse train divided into a Z rotation, partial population swap, and conditional
phase gate. b) Error-mitigated simulations of the first five points of the OTOC curve on quantum hardware, swept over the
same range of ortho-meta C-C bond lengths zom as in Fig. 2(c). The target simulation at zom, r = 2.46 Å is emphasized (solid
blue line), error bars are 1σ confidence intervals (CI). c) (upper) Comparison of the learning experiment using quantum and
classical data. Fits (lines) are from a bootstrapped Gaussian process regression, with 1σ CI shaded. (lower) Comparison of
two estimates of zom to reference data, with bootstrapped 2σ CI.

curate classical simulation from Fig. 2, but using only
the first 5 points of the OTOC [Fig. 3(c), red], achieving
an estimate zom, c− = 2.45±0.02 Å. The loss of precision
in the quantum calculation thus comes partially from the
smaller dataset used, and partially from a mix of algo-
rithmic and experimental error.

To demonstrate an OTOC based learning protocol on
degrees of freedom common to chemical systems, we per-
form a learning experiment focusing on the biphenyl
dihedral angle ϕ of DMBP dissolved in 4-Cyano-4’-
pentylbiphenyl (5CB). The energy barrier to this rota-
tion is sufficient to prevent completely free spinning, but
the barrier is insufficient to make the structure rigid at
experimental temperatures and pressure, so we consider
an ensemble of ϕ angles. This distribution is not pre-
cisely captured by molecular dynamics with an approx-
imate molecular mechanics force-field (MD/MM), nor
with high-level vacuum electronic structure simulations.
However, of the intramolecular degrees of freedom of the
DMBP molecule, the phenyl and methyl bond distances
are too rigid to be significantly affected by the interaction
with the liquid crystal environment, whilst the methyl
torsions are too unconstrained to be affected by this envi-
ronment. We can leverage this by capturing the rigid ro-
tations using MD/MM, and re-parameterizing our model
such that only the dihedral angle contributions remain.

Our task is thus to learn the free energy sur-
face, or potential of mean-force PMF(ϕ) [Fig. 4(b)],
along the dihedral angle ϕ. This yields the dipo-
lar couplings via Boltzmann’s distribution: Dij =∫
dϕ exp[−β PMF(ϕ)]Dij(ϕ)/

∫
dϕ exp[−β PMF(ϕ)],

with β the inverse temperature. We capture the ϕ-
dependent couplings Dij(ϕ) by binning and averaging
MD trajectories as separated by this collective variable.
Then, we take a simple sinusoidal model with a few
free parameters, and interpolate between estimates from

MD/MM, an artificial shifted double well potential,
and a vacuum phase DFT torsion scan. This yielded
9 candidate PMFs (Fig. 4(b)), of which the MD/MM
estimate corresponds to a PMF with minimum at
ϕ = 32.4◦, the DFT estimate corresponds to a PMF
with minimum at ϕ = 41.8◦, and the artificial double
well with a corresponding PMF minimum at ϕ = 50o.

The learning task can be accomplished by simulating
the OTOCs for these candidate PMFs on a Willow quan-
tum chip and selecting the candidate PMF that mini-
mizes the difference between the simulated and exper-
imentally measured OTOC curves. To generate quan-
tum circuits that match the numerical verification of
TARDIS, we use exponentially-costing exact simulation
and the AlphaEvolve coding agent to evolve a first-order
Trotter formula generator and produce a novel prod-
uct formula algorithm. This achieves a low mean error
(0.0084) to the exact OTOC simulation across the entire
PMF range, using no more than 792 CZ gates.

We show the learning experiment on the quantum de-
vice in Fig. 4(d), using the first 2.5 ms of NMR data for
the quantum simulation (blue, QC), and the entire 4 ms
decay curve for a comparative classical simulation (red,
sim.) that includes accurate modeling of the RF inho-
mogeneity. The quantum computer achieves an RMSE
of 0.05 to exact simulation of the input circuits across
the entire range of data, matching the performance of
the toluene example. The minima of the two cost func-
tions agree within error bars, ϕQC = 40◦ ± 3◦, whilst
ϕsim = 41.5◦ ± 0.2◦. In Fig. 4(c) we plot the OTOC
for the QC simulation of the nearest PMF, with NMR
experimental data and classical simulations overlaid.

To confirm the OTOC prediction of the dihe-
dral angle model, we simulate MQC spectra from
a partially deuterated DMBP sample [(1-13C)-3’,5’-
bis(methyl-d3)biphenyl] using the 9 PMFs, and compare
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FIG. 4. Refining a molecular mechanics model of the torsion free energy of [1-13C]-3’,5’-dimethylbiphenyl
(DMBP), validated by multiple quantum coherence (MQC) experiments. a) Workflow diagram identifying whether
a task is performed in the nuclear magnetic resonance spectrometer (red), on the quantum computer (blue), or classically
(yellow). b) Plots of the 9 potential of mean-force (PMF) candidate functions of the dihedral angle of DMBP. c) Out of time
ordered correlators (OTOC) of DMBP, comparing experimental NMR data (red points), OTOC simulations run on the Willow
chip using the most likely PMF (blue points), and classical simulations with added RF inhomogeneity (lines). d) Root-mean-
square error (RMSE) of the OTOC or MQC peak position for the 9 candidate free energy surfaces shown in (b); lines are a
Gaussian process fit. Error bars in all plots are 1σ CI except for the estimates of the PMF minimum which are shown with 2σ
CI from bootstrapping.

against experimental data. We plot [Fig. 4(d), green]
the RMSE in the 6- and 7-quantum coherence spectra
peak positions between experiment and the set of PMF
candidates. The minima of the MQC, QC, and simula-
tion RMSEs agree to within error bars, the error bars
are similar in size, and the learned PMF improves the
MQC RMSE by a factor 4 compared to a bare MD cal-
culation. These results validate both the precision and
the accuracy of our OTOC learning technique.

OUTLOOK

This work introduces a new quantum-information-
inspired framework for determining long-range distance
constraints in NMR, with potentially broad applica-
tions. Long-range distance constraints have proven es-
sential in many contexts in NMR [22], serving as “anchor
points” in structural biology [19, 20, 40, 41]. In these
works, they have been used to discriminate polymorphs
or furnish critical restraints for intramolecular and inter-
subunit geometries inaccessible to local probes. Beyond
biomolecular systems, they have been critical in validat-
ing structural models and connectivity in materials such
as metal–organic frameworks [42].

OTOCs probe long-range information via the propa-
gation of local polarization across an extended spin net-
work and its sensitivity to weak local perturbations un-
der time-reversal. This approach offers advantages over
traditional time-ordered correlation (TOC) experiments,
i.e. protocols that do not involve time-reversal. Specif-
ically, OTOCs may provide improved sensitivity to spa-

tial correlations and distances in systems where local
control is limited [26], such as the 13C-proton networks
studied within this work. While the size of the many-
body correlations and the accessible distance measure-
ments will be system-specific [43], these factors do not
change the core applicability of the technique. Esti-
mates (see Supplementary Information) suggest accessi-
ble distances of 20-60 Å for OTOC-based measurements,
approaching the length scale of Förster Resonance En-
ergy Transfer (FRET) [44]. This is beyond the reach of
state of the art NMR techniques such as proton-driven
spin diffusion (PDSD) [13], rotational echo double reso-
nance (REDOR) [11], and radio-frequency-driven recou-
pling (RFDR) [12], all of which are TOC protocols.
Additionally, while the experiments presented here

focus on single OTOCs, the framework naturally fits
within the scope of multi-dimensional NMR. Multiple
OTOCs, excited at distinct molecular sites or under effec-
tive Hamiltonians with varying symmetry-selection rules,
could enable multi–anchor-point spectroscopy, support-
ing extensive extraction of structural parameters. More-
over, OTOCs need not be restricted to pulse-sequence ex-
citation: molecular dynamics themselves may drive but-
terfly operations, providing access to distinct dynamical
timescales and rendering the OTOC a direct probe of
molecular motion [45]. The ability of quantum comput-
ers to simulate all of these potential experiments opens
up future possibilities far beyond the studies undertaken
in this work.
Despite the large body of work on the asymptotic anal-

ysis of product formulas [35], less work has gone into the
constant factor analysis at beyond-classical system sizes.
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The performance of product formula techniques [36, 46–
49] can be highly system- and quantity-specific, and met-
rics such as unitary infidelity are only loose predictors of
state- and operator-specific quantities such as OTOCs
(see Supplementary Information). Estimates of Trotter
errors suggest that naive methods would require 105−106

gates to execute OTOCs on 50-spin systems (see Supple-
mentary Information) — a large, but not astronomical
gap to current hardware requirements given careful prob-
lem selection. This presents a challenge to the quantum
algorithms community, as we do not expect this gap to
be overcome by physical hardware alone.

Our application of the AlphaEvolve algorithm [5]
presents an interesting new direction for such algorithm
optimization research. Despite successfully overcoming
the Trotterization challenge for DMBP, our AlphaEvolve
optimization loop relies on evaluating candidate circuits
against a complete, classically pre-computed dataset of
OTOCs, which is not immediately scalable to beyond-
classical system sizes. However, in this work we leveraged
the inherent strengths of the LLM-based agent to write
code that constructs Trotterized circuits, rather than
generating circuits directly [50]. We argue that this has
two key advantages. The first advantage is that the re-
sulting code can generate circuits for times and landscape
parameters outside its training data set, allowing some
degree of generalization and protection against overfit-
ting. However, while interpolation between the training
data points works in limited cases, the generator com-
monly fails to extrapolate; improving on this is a key
target for future research. The second advantage is that
the resulting function and the prompts used can be un-
derstood and analysed by humans, which we attempt in
the Supplementary Information. We find that the pri-
mary focus of the code (relative to a first order Trotter
formula) is a mixture of light cone pruning, term and
qubit ordering, adaptive time steps and a distance-based
term rescaling, some of which have been suggested before
in the literature [46, 48]. We suggest that such analysis
can allow the ideas identified by AlphaEvolve to be scaled
to system sizes inaccessible to exact simulation.

Molecular dynamics estimates are compromised by
several sources of error, including finite size effects, force
field inaccuracy, and insufficient sampling. While each
of these issues may be addressed in principle, simultane-
ously addressing all of them is impractical. Instead, ad-
dressing these shortcomings through Hamiltonian learn-
ing represents a promising avenue for accurately assess-
ing structural properties, enabled by scalable reproduc-
tion of many-body spin dynamics by quantum comput-
ers. Despite the limitations of the current scheme, in
part due to experimental uncertainty, the learned mean
value of the DMBP dihedral angle improves over predic-
tions from condensed phase molecular mechanics. These
results highlight that experimentally obtained quantum
many-body echoes can parameterize highly tuned struc-
tural models by providing information that can correct
the deficiencies of molecular dynamics simulations.

MATERIALS AND METHODS

Materials

Nematic liquid crystals 4’-Ethoxybenzylidene-
4-butylaniline (≥99.0%) [EBBA] and 4-Cyano-4’-
pentylbiphenyl (≥98.0%) [5CB] were purchased from
Tokyo Chemical Industry America and used as re-
ceived. Isotopically enriched [4-13C]-toluene (≥99.0%)
was purchased from Sigma Aldrich and used without
further purification. Isotopically labeled samples of
[1-13C]-3’,5’-dimethylbiphenyl and 3’,5’-bis(methyl-
d3)biphenyl were synthesized according to literature
procedures using starting materials purchased from
Sigma-Aldrich; full synthetic details are provided
in the Supplementary Information. The purity of
synthesized [1-13C]-3’,5’-dimethylbiphenyl and [1-13C]-
3’,5’-bis(methyl-d3)biphenyl was confirmed by 1H
and 13C NMR spectroscopy, showing no detectable
impurities.

NMR sample preparation

[4-13C]-toluene was prepared by mixing 4.2 wt% of the
compound with EBBA, heating to 358 K to reach the
isotropic phase, and sonicating to homogenize. [1-13C]-
3’,5’-dimethylbiphenyl and 3’,5’-bis(methyl-d3)biphenyl
were prepared by mixing 2% v/v of each compound with
5CB, followed by heating to 313 K and sonication. Prior
to each NMR experiment, all samples were homogenized
by sonication above the nematic–isotropic transition tem-
perature, injected into the NMR magnet, thermally cy-
cled several times through the transition point, and then
cooled slowly to the target experimental temperature.

NMR experiments

NMR experiments were performed on a Bruker Ul-
traShield 11.75 T (500 MHz for 1H) magnet equipped
with a Bruker Avance I console. A 5 mm double-
resonance BBO smart probe was tuned to facilitate
1H and 13C experiments. The sample temperature
was maintained at 295 K for [4-13C]-toluene@EBBA
and 289 K for [1-13C]-3’,5’-dimethylbiphenyl@5CB, [1-
13C]-3’,5’-bis(methyl-d3)biphenyl@5CB using the inter-
nal temperature control unit. Pulse powers of the 1H
and 13C channels were synchronized to achieve a nu-
tation amplitude of ∼ 23.8 kHz. All OTOC exper-
iments were preceded by a preparation filter generat-
ing pure 13C magnetization via a combination of gra-
dient pulses and Loschmidt echo elements, followed by
the application of a TARDIS element for variable du-
rations. The TARDIS element was designed to gener-
ate effective dipolar double-quantum evolution in the
presence of homo- and heteronuclear dipolar couplings
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∑
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into account finite pulse width and pulse amplitude ef-
fects (see Supplementary Information). A selective per-
turbation, in the form of a local rotation, was applied
to the methyl protons in both target systems. This
was achieved through the application of a BLEW12 [51]
element applied to the proton channel, resonant with
the methyl spins, followed by a second BLEW12 pro-
ton element sandwiched by two carbon π-pulses. Time-
reversal was achieved through a second (π/2)-phase-
shifted TARDIS element sandwiched by two π pulses on
the carbon channel. Application of the (π/2)-phase-shift
reversed the sign of the double-quantum part of the effec-
tive generator (RI

z(π/2)I
+
i I+j RI

z(−π/2) = −I+i I+j ) [10],
whereas the two π pulses on the carbon channel in-
verted the sign of the heteronuclear part similar to a spin
echo. Finally, readout was performed on the 13C channel.
MQC spectroscopy followed the general scheme outlined
in [34]. Full details of the NMR experiments and all
pulse sequence elements are given in the Supplementary
Information.

Processing of NMR and SC experimental data for
learning experiments

Each NMR dataset shown is an average over 10 in-
dependent measurements, allowing us to calculate the
standard error σt = [

∑
j(

¯C(t)−Cj(t))
2]1/2/N . Measure-

ments of datapoints at different times were assumed to
be independent. However, as the measured peak am-
plitudes are normalized by the OTOC at t = 0, the
uncertainty in this amplitude was propagated to the
other OTOC estimates, which led to a covariance ma-
trix ΣNMR with non-zero off-diagonal terms. ΣNMR

was then used to obtain the covariance weighted er-
ror plotted in Fig. 2(e): Cov. wt. err = [(CNMR −
Csim)

TΣNMR(CNMR − Csim)]
1/2/Trace[Σ]1/2. Here, we

write C as shorthand for arrays containing the OTOC
data indicated in the subscript. Error bars in Fig. 2(e)
were obtained by bootstrapping over the initial 10 points
for each NMR dataset. To combine this data with the
output of the quantum computer for Fig. 3 and Fig. 4, we
took the covariance matrix ΣQC (which we assume to be
diagonal), and combined this with the NMR covariance
matrix to yield Σtot = [Σ−1

NMR(Σ
−1
NMR + ΣQC)

−1Σ−1
QC]

−1.
This was substituted for ΣNMR in the above definition
of the covariance weighted error to give the cost func-
tion in Fig. 3(c). Error bars in this figure were calcu-
lated by bootstrapping over the NMR datapoints, and
re-sampling the quantum computer data from a normal
distribution. For Fig. 4(d), we used the root-mean-square
error RMSE = [ 1N ∥Csim −CNMR∥]1/2 as a cost function
instead of the covariance weighted error.

Molecular dynamics simulations details

Starting structures were generated with Packmol ver-
sion 21.0.0 [52] at a concentration of 2.05% v/v 1,3-
dimethyl-5-(phenyl-13C)benzene and a starting density
of 1.01 g/ml. The liquid crystal molecules were ap-
proximately aligned along the x-axis of the simulation
box with dimensions [65Å, 50Å, 50Å] by providing angle
constraints in the Packmol input file. The initial struc-
tures were then relaxed by minimizing the system at con-
stant volume and equilibrated with 500 ps of isothermal-
isobaric (NPT) dynamics. All simulations used a 2 fs
time step with hydrogen bond constraints and a hydro-
gen mass of 4 amu. NPT calculations used a Monte
Carlo barostat with updates every 25 steps. All en-
semble averages were evaluated with respect to 8 inde-
pendent trajectories with production times of 1 µs each.
All molecular dynamics simulations were performed us-
ing OpenMM [53].

Non-bonded parameters from GAFF version 2.11 [54]
were deployed for 5CB and DMBP in combination with
bonded parameters from Grappa version 1.3.1 [55]. Al-
though Grappa was designed for biomolecules, the train-
ing set includes a very large dataset of small organic
molecules and we have observed empirically that the
Grappa force field imparts additional flexibility to the
aliphatic chains in the liquid crystal relative to GAFF.
This is consistent with modifications made to GAFF for
liquid crystal systems [56].

The order parameters of 5CB are known to be sensitive
to the temperature [57, 58], and are difficult to model
with molecular dynamics [59]. This necessarily impacts
both the mean-value of the dihedral angle of DMBP, and
the ϕ-dependent coupling matrices Dij(ϕ). To minimize
this effect, we shift the temperature of the experiment
to 289 K (as reported in the above section), where the
order parameters most accurately match simulation, and
use this throughout all DMBP experiments.

Classical simulation of toluene

Toluene in EBBA was modeled as a static benzene ring
with a freely rotating methyl group in a fixed plane,
in a similar manner to Ref. [34]. The motion in the
liquid crystal background was treated with the Saupe
tensor formalism, assuming all molecular motion occurs
on timescales ≪ 1 ms (see Supplementary Information).
Data for the molecular co-ordinates and all J-couplings
was taken from Ref. [34], except for the J-coupling be-
tween the 13C and the nearest proton (which is signifi-
cantly larger than all other J-couplings). The Saupe ten-
sor, chemical shifts, and the remaining J coupling were
obtained by fitting to MQC data (see Supplementary In-
formation). Data was separately validated by comparing
to the molecular dynamics simulations of the toluene-
EBBA system above.
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Trotterized Hamiltonian simulation and machine
learning

AlphaEvolve setup

AlphaEvolve [5] is an evolutionary coding agent that
leverages large language models (LLMs) to discover novel
and efficient solutions for a variety of scientific prob-
lems. In this work, AlphaEvolve is used to generate a
set of Python functions that produce quantum circuits
approximating Hamiltonian evolution across an entire
parameter landscape of time and Hamiltonian inputs,
as opposed to optimizing individual quantum circuits
or circuit parameters directly. The process was seeded
with a human-written program (a first-order Trotter for-
mula) that served as the initial solution to a given task.
Through a process of mutation, evaluation, and selec-
tion, AlphaEvolve ultimately generated a population of
programs that produce simulation circuits with signifi-
cantly lower approximation error against the reference
(improving from a 10.4% mean error to 0.82%), while
remaining below the gate budget enforced by the device
(see Supplementary Information for further explanation).

The MAP-Elites-like setup of AlphaEvolve [60] was
used as a base for this work, optimized for a single RMS
error metric targeting the average approximation error
across the entire set of landscape parameter and time
values evaluated. By stochastically injecting domain-
specific suggestions into the prompt, the optimization
algorithm was steered towards granular changes relevant
to the task. Here, task-specific modifications were in-
troduced, such as a mixture of hand-crafted and LLM-
generated task instructions specific to quantum simula-
tion and circuit optimization problems. These led to in-
creased performance of the algorithm, both in terms of
achieved metric value and convergence speed, i.e. num-
ber of required LLM samples. The LLMs are pre-trained
on large corpora of scientific literature and thus already
possess knowledge of the most commonly used quantum
algorithms, quantum simulation, and other relevant do-
main knowledge.

For each parent program, in addition to the program’s
overall RMS error, an associated error matrix was in-
cluded in a tabular format giving the OTOC error for
each point in the parameter landscape and time. This
feedback allows the LLM to perform in-context reinforce-
ment learning: by focusing on regions with high error, the
model can attempt to generate a more accurate circuit
for these regions without sacrificing overall performance.

The algorithm’s parallelized nature was leveraged to
redistribute resources. To cover a larger portion of the
search space, multiple, initially independent AlphaEvolve
runs were started. As the optimization progresses, the
independent runs were regularly synced by re-seeding
with the current best solution. This was either per-
formed via full re-seeding or by eliminating only the
worst-performing run. Empirically, we found that this
strategy resulted in a much faster improvement of the

fitness function with respect to the number of LLM sam-
ples used.

Circuit optimization problem setup

For processing by AlphaEvolve, a problem needs to be
split into four well-defined pieces, as described here:
Problem Specification: A Python program imple-

menting a first-order Trotter formula with a swap net-
work for 15 qubits on a chain in a dense brick-wall fashion
served as starting point for the evolutionary process. For
this initial program, the input parameters of the function
were the total time t and number of Trotter steps to be
implemented, as well as the homogeneous/heterogeneous
(j) couplings and an on-site terms. Additionally, we pro-
vided the butterfly and measurement indices, the land-
scape parameter p, and a maximum number of allowed
CZ gates, despite these being unused in the function
initially. These additional parameters were included in
the function signature to inform AlphaEvolve about the
wider context of the program, and to give additional in-
formation could be useful for optimization.
Prompt and sampling: In each iteration, AlphaE-

volve selected a program from its database to act as a
parent. This parent program was then used to generate
a prompt for an LLM, which was tasked with creating a
child program that improves upon the parent. A fixed
generic prompt was included, describing quantum simu-
lation, Trotterization, NMR, and OTOCs on a very high
level. Per LLM call, a domain-specific or generic prompt
was further added, as well as focus prompts that primar-
ily target code simplification, refactoring and removal of
dead code, or to focus on a particular task (lightcone,
THRIFT [61], commutator scaling). In all cases, the sig-
nature of the function to be generated remained fixed.
Evaluation: The obtained function was used to gen-

erate quantum circuits for all choices of parameters and
time steps. These circuits were then individually evalu-
ated by averaging the OTOC over 250 randomly-sampled
initial states. To ensure that this random evaluation
yields only a small approximation error, this approxi-
mate OTOC was compared with the exact OTOC com-
putation that uses the full set of 215 states. For the
latter a new technique using sparse matrix computations
on GPU was implemented to produce unitary matrices
for large circuits instead of much slower regular einsum-
based method. The seed for the state sampling varied for
each time and landscape parameter choice, but remained
fixed throughout the optimization run to avoid small ran-
dom fluctuations influencing the evaluation of mutations
while speeding up the pipeline. The root mean square
error between the evaluated OTOCs and the reference
data was used as an optimization metric.
Database Integration: Child programs that were

both valid and exhibited a sufficiently high fitness score
were added to the database of programs. Programs were
discarded, for example, if the circuit they produced ex-



10

ceeded a predefined number of gates. Counting CZ gates
as implemented in the Cirq framework with Cartan’s
KAK decomposition [62] was the dominant bottleneck,
with this calculation alone being the dominant part of
the step time. To optimize this, a highly parallel KAK
decomposition was implemented, effectively removing the
contribution of the compilation step to the total time and
compute budget. Consequently, the evolved program was
provided with an option to use CZ counting as a tool
(which it did by implementing a two-pass circuit genera-
tion, see Supplementary Information).

We provide an additional analysis on the efficiency of
different instruction prompts, high-level intuition of what
kinds of modifications AlphaEvolve suggests and gener-
ated codes and circuits in the Supplementary Informa-
tion.

Details of superconducting qubit devices and gate
calibration

Quantum simulation was performed on a Willow quan-
tum computer similar to that described in [4] (see also
[63]). Processors in this lineage are based on a 2D grid
of flux tunable superconducting transmon qubits con-
nected by flux tunable couplers between nearest neigh-
bors. In this work, the mean frequency of operation was
∼ 6.2 GHz with anharmonicity ∼210 MHz.

As the two molecules addressed in this work require
nine and fifteen qubits only, we selected a sub-grid of
the 105 qubit Willow with performance better than av-
erage in the relevant benchmark metrics. Qubits were
arranged in a line, with the measurement qubit at one
end. The average lifetime of the single photon excitation
in the chosen line of qubits was T1 = 114 µs. The aver-
age coherence time of the chosen qubits as measured by
a Hahn-Echo sequence was T2E = 130 µs. The perfor-
mance of single qubit microwave gates was measured by
Clifford randomized benchmarking (RB) error and the
associated qubit impurity, which were found to be on
average 0.00020 and 0.00015, respectively. The average
cycle Pauli cross-entropy benchmarking (XEB) error, in-
cluding error contributions from two single qubit gates
and a single two-qubit gate, was for CZ 0.0015, and for√
iSWAP 0.0014. The average readout error of the single

measurement qubit was 0.00985. Since the data taking
for the quantum simulation of the OTOC-NMR learning
sequence took several days, these metrics drifted slightly
before completion. While the processor requires recali-
bration during this time, these numbers are typical and
representative of our experiments.

The all-to-all coupling was achieved by a swap net-
work, a technique adapted from [37]. Here, one compiles
swap gates through a depth N “brick wall” pattern of
two-qubit interactions, such that the swap gates permute
floating spin indices through the qubit array. This is op-
timal in terms of both the number of gates and the depth
required to execute one interaction between each pair of

spins, as is needed for a single Trotter step of the all-to-all
coupled dipolar Hamiltonian. In our quantum simulation
of Toluene, we further approximated that the 13C spin
only interacted with its nearest proton. This single cou-
pling was treated in the interaction frame and the 13C
spin was removed from the swap network, reducing the
number of gates needed by 17%. This approximation was
justified as all other 1H-13C couplings were two orders of
magnitude smaller for the entire set of toluene geometries
considered, and we observed that the interaction frame
treatment slightly reduced the Trotter error.

The quantum simulation for Toluene was based on a
natural decomposition of the target effective Hamiltonian
into Fermionic simulation (fSim) gates [64]. These gates
are parametrized by two two-qubit interaction angles:
the swap angle and the conditional phase angle. Across
the entire landscape, the Trotterization of the Toluene
evolution required calibrating a set of 80 unique fSim
gates. Previous work was able to operate with a single
pulse fSim [3, 65–69]. However, achieving arbitrary com-
binations of swap and conditional phase angles with a sin-
gle pulse often requires either a long gate duration, which
degrades performance by decoherence, or a large interac-
tion coupling strength between qubits, which increases
leakage processes outside of the computational manifold.
In this work, due to the range of coupling strengths in
Toluene and the coarse-grained Trotterization, the swap
angles that needed to be calibrated spanned the entire
domain from 0 to π/2. To solve this issue, we adapted a
two-pulse fSim approach from earlier work in a Sycamore
architecture [64]. Here, a first base band interaction pulse
sets the swap angle and induces a spurious < 100 mrad
conditional phase, while a second pulse enacts a condi-
tional phase and a spurious ∼ 30 mrad swap angle. The
two-pulse approach is calibration intensive, but provides
higher performance and flexibility than a single pulse ap-
proach.

The two pulses for each fSim gate were calibrated to-
gether as a single gate with an iterative procedure adapt-
ing one of two high precision periodic “Floquet” calibra-
tions previously developed, depending on the target swap
angle. For small target swap angles (< 30 mrad) we
adapted the technique presented in [66]. For larger swap
angles and for the conditional phase we adapted the tech-
nique presented in [65]. To achieve the desired precision
in the full range we fine-tuned the number of gates used
in the periodic calibration and fitting procedure depend-
ing on the value of the expected angle. The procedure
accounts for the aforementioned spurious terms as part
of the calibrated final gate, attaining the target interac-
tion angles with a max tolerance of 20 mrad, and typ-
ical error < 5 mrad. As in previous work [3, 4], single
qubit phases of the fSim gates are measured by XEB fit-
ting and removed by phase matching single qubit gates
to yield the total gate. The median XEB error for the
tuned fSim gates was measured at 0.0026 and max XEB
error 0.0045. Compatible pairs of qubits were calibrated
simultaneously, and therefore benchmarks include cross-
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Extended Data Fig. 1. Benchmark of Pauli Path
ZNE error mitigation on the 15-spin molecule at
odd time indices. Out-of-time-order correlator (OTOC)
measurements for DMBP at odd NMR time indices, taken
during a different experimental run from that shown in the
main text, on a different date, to provide a secondary bench-
mark. The smallest raw signal (gray squares) measured was
0.055 ± 0.003 (data includes real-time readout mitigation,
double-sided light cone filtering, twirling, and dynamical de-
coupling). Despite this small signal, the Pauli Path ZNE-
mitigated data (blue circles) was successfully extracted, serv-
ing as a stringent test for the mitigation technique.

talk effects. More details on these experiments can be
found in the Supplementary Information.

For the quantum simulation of DMBP, a 15 qubit lin-
ear chain with similar performance was used. In con-
trast to the Toluene experiments, the AlphaEvolve cod-
ing agent generated circuits using a CZ decomposition,
which did not require us to use the fSim construction
detailed above.

Error mitigation pipeline for noisy quantum circuits

The structured character of the NMR OTOC circuits
prohibits the use of mitigation strategies used in earlier
works that are tailored to random OTOC circuit ensem-
bles [4]. The circuits used are also very deep: the deep-
est 9-spin circuits span 326 circuit moments and used
540 two-qubit composite fSim gates, while the deepest
circuits for the 15-spin molecule span 484 moments and
used 792 CZ gates. (These numbers count only relevant
gates within the double light cones of the measurement
and butterfly operators; we typically remove gates that
will have no impact on the final OTOC measurement
from the circuit.) The resulting damping of the noisy
OTOC signal was observed in the worst case to be as
small as 0.15.

To reliably and accurately extract data from these

noisy quantum circuits, we employ a composite, recon-
figurable error mitigation framework designed to op-
erate across different gate sets, using distinct config-
urations for the 9-spin (fSim-based) and 15-spin (CZ-
based) molecular OTOC experiments. We developed
a four-stage mitigation pipeline consisting of algorith-
mic and physical-level stages: (1) Circuit generation at
the algorithmic level; (2) Algorithmic-level error mitiga-
tion, which involved double-sided light cone filtering [4],
Pauli Path ZNE (described below) [70–73], algorithmic-
level DD, and sub-Clifford algorithmic-block twirling
[74, 75]; (3) Native gate decomposition and optimization;
(4) Physical-layer mitigation, which involved hardware-
adapted DD sequences for idle periods with Clifford
twirling [74–77], and real-time randomized readout error
mitigation [78]. This describes the full pipeline for the
9 spin fSim circuits. The 15 spin CZ-based circuit used
the same pipeline, but without the need for algorithmic-
level DD, and using full (rather than sub) Clifford group
twirling for the two-qubit gates and idle periods.
As part of this work, we developed a novel Pauli-path

zero-noise extrapolation (ZNE) scheme based on the evo-
lution of the measurement operator in the Pauli path
picture [3, 4, 30, 79]. This is based on the identification
that the noisy expectation value C(λ) (with λ the noise
scaling factor) is the Laplace transform of the underlying
Pauli path total Hamming weight distribution c(H) [4],
where H is the noise accumulation weight. Though this
distribution c(H) can be highly oscillatory, the Laplace
transform smooths out high-frequency components, al-
lowing simple, low frequency approximations to c(H) to
robustly extrapolate C(λ). Taking a normal approxima-
tion of c(H), we derive an analytical functional form for
the observed decay which serves as our main model for
extrapolation:

C(λ) = C(0)

(
1 + erf(

H̄c−λσ2
c

σc
)
)

(
1 + erf(H̄c/σc)

) e−λH̄ceλ
2σ2

c/2 . (2)

The functional form is parameterized by three key quan-
tities: C(0) is the noise-free extrapolated value, while
H̄c and σc represent the mean and standard deviation
respectively of the Pauli path Hamming weight distribu-
tion c(H). These two parameters effectively characterize
the noise-induced decay profile. We define the dimension-
less parameter β as the ratio of the spread to the average
noise accumulation β = σc

H̄c
, where β > 0 and typically

β < 0.5. For deep circuits where β is non-negligible,

the quadratic term eλ
2σ2

c/2 and the error function (erf)
correction become essential, as they account for the non-
exponential, concave decay profile caused by the complex
quantum dynamics, and the physical constraint of non-
negative noise weight (H ≥ 0). This model is conjectured
to work even in the regime where Pauli path numeric ap-
proximations fail (as is the case in these experiments).
The Pauli Path ZNE framework can be very sensitive

to statistical noise when working with deep circuits with
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low fidelities. To achieve robust extrapolation across the
entire time series, we implemented a specialized Bayesian
model-fitting update workflow. This time-correlated
strategy utilizes data from shallower, less-noisy time
steps—where the circuit fidelity is stronger—to establish
a Bayesian prior. This prior then iteratively seeds and
updates the model fit for deeper, noisier circuits, sta-
bilizing the parameter estimation for the extrapolation.
We employ a global-parameter optimization algorithm,
which combines a local minimization routine with ran-
dom jumps across the parameter space to overcome local
optimization minima and improve robustness to noise,
and a rare outlier rejection protocol. We employ boot-
strap resampling over the mitigation circuit instances to
evaluate both the mitigated values and their respective
uncertainties. This combined with the Pauli path theory
allows the system to overcome the challenges associated
with signal damping and accurately estimate the zero-
noise limit even in the deepest regions of the circuit.
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Tomašev, B. Kozlovskii, F.J.H. Heras, and P. Kohli de-
signed, tested, and ran the AlphaEvolve optimization ex-
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mando Angrisani, and Zoë Holmes, “Pauli propagation:
A computational framework for simulating quantum sys-
tems,” arXiv preprint arXiv:2505.21606 (2025).

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.120504
http://dx.doi.org/10.1126/sciadv.aay5901
http://arxiv.org/abs/2010.07965
http://arxiv.org/abs/2010.07965
http://dx.doi.org/10.1038/s41586-021-04257-w
http://dx.doi.org/10.1038/s41586-021-04257-w
http://arxiv.org/abs/2107.13571
http://dx.doi.org/10.1038/s41586-021-03576-2
http://dx.doi.org/10.1038/s41586-021-03576-2
http://arxiv.org/abs/2012.00921
http://dx.doi.org/10.1126/science.abq5769
http://dx.doi.org/10.1126/science.abq5769
http://arxiv.org/abs/2204.11372
http://dx.doi.org/10.1038/s41586-022-05348-y
http://arxiv.org/abs/2206.05254
http://dx.doi.org/10.1103/PhysRevLett.119.180509
http://dx.doi.org/10.1103/PhysRevLett.119.180509
http://dx.doi.org/10.1103/PHYSREVX.7.021050/FIGURES/5/MEDIUM
http://dx.doi.org/10.1103/RevModPhys.95.045005
http://arxiv.org/abs/2210.00921
http://dx.doi.org/10.1038/s41467-025-61493-8
http://dx.doi.org/10.1038/s41467-025-61493-8
http://dx.doi.org/10.1103/PhysRevLett.76.722
http://dx.doi.org/10.1103/PhysRevLett.76.722
http://dx.doi.org/10.48550/arXiv.quant-ph/0404104
http://dx.doi.org/10.48550/arXiv.quant-ph/0404104
http://arxiv.org/abs/quant-ph/0404104
http://dx.doi.org/10.1103/PhysRevA.58.2733
http://dx.doi.org/10.1103/PhysRevA.58.2733
http://arxiv.org/abs/quant-ph/9803057
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://arxiv.org/abs/quant-ph/9809071
http://dx.doi.org/10.1103/PhysRevA.105.032620
http://dx.doi.org/10.1103/PhysRevA.105.032620
https://arxiv.org/pdf/2505.21606

	Quantum computation of molecular geometry via many-body nuclear spin echoes
	Abstract
	Results
	Outlook
	Materials and methods
	Materials
	NMR sample preparation
	NMR experiments
	Processing of NMR and SC experimental data for learning experiments
	Molecular dynamics simulations details
	Classical simulation of toluene
	Trotterized Hamiltonian simulation and machine learning
	AlphaEvolve setup
	Circuit optimization problem setup

	Details of superconducting qubit devices and gate calibration
	Error mitigation pipeline for noisy quantum circuits

	Acknowledgments
	Author contributions
	References


