Routing with t|ket>

View on QuantumAI Run in Google Colab View source on GitHub Download notebook

Wrap tket's compilation unit framework to keep track of qubit mappings and work with generic devices.


Install the ReCirq package:

    import recirq
except ImportError:
    !pip install -q git+ sympy~=1.6

Now import Cirq, ReCirq and the module dependencies:

import cirq
import recirq
import networkx as nx
from cirq.contrib.svg import SVGCircuit
import numpy as np
from pytket.predicates import CompilationUnit, ConnectivityPredicate
from pytket.passes import SequencePass, RoutingPass, DecomposeSwapsToCXs
from pytket.routing import GraphPlacement

Example circuit

We'll route a 3-regular circuit to Sycamore23. To try to clear up some of the confusion about which indices are which, we'll construct the initial circuit with LineQubits 10 through 19 which should be thought of as "logical indices".

from recirq.qaoa.problem_circuits import get_generic_qaoa_circuit
from recirq.qaoa.gates_and_compilation import compile_problem_unitary_to_arbitrary_zz, \

problem_graph = nx.random_regular_graph(d=3, n=10)
nx.set_edge_attributes(problem_graph, values=1, name='weight')
circuit_qubits = cirq.LineQubit.range(10, 20)
gammas = np.random.randn(2)
betas = np.random.randn(2)
circuit = get_generic_qaoa_circuit(
circuit = compile_problem_unitary_to_arbitrary_zz(circuit)
circuit = compile_driver_unitary_to_rx(circuit)
findfont: Font family ['Arial'] not found. Falling back to DejaVu Sans.


"Route" this circuit

Let's look at the "connectivity graph" of the circuit vs. that of the device

import cirq.contrib.routing as ccr

uncompiled_c_graph = ccr.get_circuit_connectivity(circuit)


import as cg

dev_graph = ccr.xmon_device_to_graph(cg.Sycamore23)


# alias for the device. If this notebook were wrapped
# in a function, `circuit` and `device` would be the arguments
device = cg.Sycamore23

Convert to pytket Device

The provided function doesn't work with SerializableDevice. We use existing functionality to turn Devices into graphs to provide a more robust solution.

import pytket
from pytket.circuit import Node

def _qubit_index_edges():
    dev_graph = ccr.xmon_device_to_graph(device)
    for n1, n2 in dev_graph.edges:
        yield Node('grid', n1.row, n1.col), Node('grid', n2.row, n2.col)

def _device_to_tket_device():
    arc = pytket.routing.Architecture(
    return pytket.device.Device({}, {}, arc)

tk_circuit = pytket.extensions.cirq.cirq_to_tk(circuit)
tk_device = _device_to_tket_device()
[q[10], q[11], q[12], q[13], q[14], q[15], q[16], q[17], q[18], q[19]]
[(grid[3, 2], grid[4, 2]),
 (grid[4, 2], grid[4, 1]),
 (grid[4, 2], grid[4, 3]),
 (grid[4, 2], grid[5, 2]),
 (grid[4, 1], grid[5, 1]),
 (grid[4, 3], grid[5, 3]),
 (grid[5, 2], grid[5, 3]),
 (grid[5, 2], grid[6, 2]),
 (grid[5, 1], grid[5, 2]),
 (grid[5, 1], grid[5, 0]),
 (grid[5, 1], grid[6, 1]),
 (grid[6, 1], grid[6, 2]),
 (grid[5, 3], grid[5, 4]),
 (grid[5, 3], grid[6, 3]),
 (grid[6, 2], grid[6, 3]),
 (grid[6, 2], grid[7, 2]),
 (grid[5, 4], grid[6, 4]),
 (grid[6, 3], grid[6, 4]),
 (grid[6, 3], grid[7, 3]),
 (grid[7, 2], grid[7, 3]),
 (grid[6, 4], grid[6, 5]),
 (grid[6, 4], grid[7, 4]),
 (grid[7, 3], grid[7, 4]),
 (grid[7, 3], grid[8, 3]),
 (grid[6, 5], grid[7, 5]),
 (grid[7, 4], grid[7, 5]),
 (grid[7, 4], grid[8, 4]),
 (grid[8, 3], grid[8, 4]),
 (grid[7, 5], grid[7, 6]),
 (grid[7, 5], grid[8, 5]),
 (grid[8, 4], grid[8, 5]),
 (grid[8, 4], grid[9, 4])]

Placement and routing pass

from pytket.predicates import CompilationUnit, ConnectivityPredicate
from pytket.passes import SequencePass, RoutingPass, DecomposeSwapsToCXs, PlacementPass
from pytket.routing import GraphPlacement
unit = CompilationUnit(tk_circuit, [ConnectivityPredicate(tk_device)])
passes = SequencePass([
valid = unit.check_all_predicates()
assert valid

The initial mapping

This maps from logical LineQubits to "physical" GridQubits

{q[10]: grid[3, 2],
 q[11]: grid[5, 4],
 q[12]: grid[5, 1],
 q[13]: grid[6, 4],
 q[14]: grid[4, 2],
 q[15]: grid[5, 3],
 q[16]: grid[4, 3],
 q[17]: grid[5, 2],
 q[18]: grid[6, 2],
 q[19]: grid[4, 1]}

Bookkept initial mapping

We "decode" our tket conventions back into Cirq idioms.

def tk_to_cirq_qubit(tk):
    ind = tk.index
    return cirq.LineQubit(ind[0]) if len(ind) == 1 else cirq.GridQubit(*ind)

initial_map = {tk_to_cirq_qubit(n1): tk_to_cirq_qubit(n2) for n1, n2 in unit.initial_map.items()}
{cirq.LineQubit(10): cirq.GridQubit(3, 2),
 cirq.LineQubit(11): cirq.GridQubit(5, 4),
 cirq.LineQubit(12): cirq.GridQubit(5, 1),
 cirq.LineQubit(13): cirq.GridQubit(6, 4),
 cirq.LineQubit(14): cirq.GridQubit(4, 2),
 cirq.LineQubit(15): cirq.GridQubit(5, 3),
 cirq.LineQubit(16): cirq.GridQubit(4, 3),
 cirq.LineQubit(17): cirq.GridQubit(5, 2),
 cirq.LineQubit(18): cirq.GridQubit(6, 2),
 cirq.LineQubit(19): cirq.GridQubit(4, 1)}

The final mapping

This maps from logical LineQubits to final GridQubits

{q[10]: grid[4, 2],
 q[11]: grid[6, 4],
 q[12]: grid[4, 1],
 q[13]: grid[5, 4],
 q[14]: grid[4, 3],
 q[15]: grid[5, 3],
 q[16]: grid[6, 2],
 q[17]: grid[3, 2],
 q[18]: grid[5, 2],
 q[19]: grid[5, 1]}
final_map = {tk_to_cirq_qubit(n1): tk_to_cirq_qubit(n2)
             for n1, n2 in unit.final_map.items()}
{cirq.LineQubit(10): cirq.GridQubit(4, 2),
 cirq.LineQubit(11): cirq.GridQubit(6, 4),
 cirq.LineQubit(12): cirq.GridQubit(4, 1),
 cirq.LineQubit(13): cirq.GridQubit(5, 4),
 cirq.LineQubit(14): cirq.GridQubit(4, 3),
 cirq.LineQubit(15): cirq.GridQubit(5, 3),
 cirq.LineQubit(16): cirq.GridQubit(6, 2),
 cirq.LineQubit(17): cirq.GridQubit(3, 2),
 cirq.LineQubit(18): cirq.GridQubit(5, 2),
 cirq.LineQubit(19): cirq.GridQubit(5, 1)}

The compilation unit applies the mapping

So our circuit qubits are now GridQubits

[grid[3, 2],
 grid[4, 1],
 grid[4, 2],
 grid[4, 3],
 grid[5, 1],
 grid[5, 2],
 grid[5, 3],
 grid[5, 4],
 grid[6, 2],
 grid[6, 4]]

Convert the circuit back to Cirq

routed_circuit = pytket.extensions.cirq.tk_to_cirq(unit.circuit)


Now it's nice and compiled

routed_c_graph = ccr.get_circuit_connectivity(routed_circuit)


Check that circuits are equivalent

for _, op, _ in routed_circuit.findall_operations_with_gate_type(cirq.TwoQubitGate):
    a, b = op.qubits
    assert a.is_adjacent(b)
import cirq.contrib.acquaintance as cca
def permute_gate(qubits, permutation):
    return cca.LinearPermutationGate(
        permutation={i: permutation[i] for i in range(len(permutation))}

final_to_initial_map = {final_map[cq]: initial_map[cq]
                              for cq in circuit_qubits}
initial_qubits = [initial_map[cq] for cq in circuit_qubits]
final_permutation = [initial_qubits.index(final_to_initial_map[q])
                     for q in initial_qubits]
rcircuit_with_perm = routed_circuit.copy()
rcircuit_with_perm.append(permute_gate(initial_qubits, final_permutation))
expected = circuit.unitary(qubit_order=cirq.QubitOrder.explicit(circuit_qubits))
actual = rcircuit_with_perm.unitary(qubit_order=cirq.QubitOrder.explicit(initial_qubits))
cirq.testing.assert_allclose_up_to_global_phase(expected, actual, atol=1e-8)