fqe.transform.cirq_to_fqe_single

Given a wavefunction from cirq, create a FermionOperator string which

will create the same state in the basis of Fermionic modes such that

.. math::

|\Psi\rangle &= \mathrm{(qubit\ operators)}|0 0\cdots\rangle
= \mathrm{(Fermion\ Operators)}|\mathrm{vac}\rangle \\
|\Psi\rangle &= \sum_iC_i \mathrm{ops}_{i}|\mathrm{vac}>

where the c_{i} are the projection of the wavefunction onto a FCI space.

cirq_wfn (numpy.array(ndim=1, numpy.dtype=complex64)) - coeffcients in the qubit basis.

nele (int) - the number of electrons

m_s (int) - the s_z spin angular momentum

qubiin (LineQUibit) - LineQubits to process the representation

FermionOperator