View source on GitHub |
Given a wavefunction from cirq, create a FermionOperator string which
fqe.transform.cirq_to_fqe_single(
cirq_wfn: numpy.ndarray,
nele: int,
m_s: int,
qubin: int
) -> FermionOperator
will create the same state in the basis of Fermionic modes such that
.. math::
|\Psi\rangle &= \mathrm{(qubit\ operators)}|0 0\cdots\rangle
= \mathrm{(Fermion\ Operators)}|\mathrm{vac}\rangle \\
|\Psi\rangle &= \sum_iC_i \mathrm{ops}_{i}|\mathrm{vac}>
where the c_{i} are the projection of the wavefunction onto a FCI space.
Args | |
---|---|
cirq_wfn (numpy.array(ndim=1, numpy.dtype=complex64)) - coeffcients in the qubit basis.
nele (int) - the number of electrons m_s (int) - the s_z spin angular momentum qubiin (LineQUibit) - LineQubits to process the representation |
Returns | |
---|---|
FermionOperator |