openfermion.linalg.jordan_wigner_sparse
Initialize a Scipy sparse matrix from a FermionOperator.
openfermion.linalg.jordan_wigner_sparse(
fermion_operator, n_qubits=None
)
Operators are mapped as follows:
a_j^\dagger -> Z0 .. Z{j-1} (X_j - iY_j) / 2
a_j -> Z0 .. Z{j-1} (X_j + iY_j) / 2
Args |
fermion_operator
|
FermionOperator
instance of the FermionOperator
class.
|
n_qubits
|
int
Number of qubits.
|
Returns |
The corresponding Scipy sparse matrix.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-04-26 UTC.
[{
"type": "thumb-down",
"id": "missingTheInformationINeed",
"label":"Missing the information I need"
},{
"type": "thumb-down",
"id": "tooComplicatedTooManySteps",
"label":"Too complicated / too many steps"
},{
"type": "thumb-down",
"id": "outOfDate",
"label":"Out of date"
},{
"type": "thumb-down",
"id": "samplesCodeIssue",
"label":"Samples / code issue"
},{
"type": "thumb-down",
"id": "otherDown",
"label":"Other"
}]
[{
"type": "thumb-up",
"id": "easyToUnderstand",
"label":"Easy to understand"
},{
"type": "thumb-up",
"id": "solvedMyProblem",
"label":"Solved my problem"
},{
"type": "thumb-up",
"id": "otherUp",
"label":"Other"
}]
{"lastModified": "Last updated 2024-04-26 UTC."}
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[]]