Kronecker product of two arrays.
openfermion.utils.channel_state.kron(
a, b
)
Computes the Kronecker product, a composite array made of blocks of the second array scaled by the first.
Parameters
a, b : array_like
Returns
out : ndarray
See Also
outer : The outer product
Notes
The function assumes that the number of dimensions of a
and b
are the same, if necessary prepending the smallest with ones.
If a.shape = (r0,r1,..,rN)
and b.shape = (s0,s1,...,sN)
,
the Kronecker product has shape (r0*s0, r1*s1, ..., rN*SN)
.
The elements are products of elements from a
and b
, organized
explicitly by::
kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN]
where::
kt = it * st + jt, t = 0,...,N
In the common 2-D case (N=1), the block structure can be visualized::
[[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ],
[ ... ... ],
[ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]]
Examples
>>> np.kron([1,10,100], [5,6,7])
array([ 5, 6, 7, ..., 500, 600, 700])
>>> np.kron([5,6,7], [1,10,100])
array([ 5, 50, 500, ..., 7, 70, 700])
np.kron(np.eye(2), np.ones((2,2)))
array([[1., 1., 0., 0.],
[1., 1., 0., 0.],
[0., 0., 1., 1.],
[0., 0., 1., 1.]])
a = np.arange(100).reshape((2,5,2,5))
b = np.arange(24).reshape((2,3,4))
c = np.kron(a,b)
c.shape
(2, 10, 6, 20)
I = (1,3,0,2)
J = (0,2,1)
J1 = (0,) + J # extend to ndim=4
S1 = (1,) + b.shape
K = tuple(np.array(I) * np.array(S1) + np.array(J1))
c[K] == a[I]*b[J]
True