openfermion.utils.channel_state.array

array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0, like=None)

Create an array.

Parameters

object : array_like An array, any object exposing the array interface, an object whose __array__ method returns an array, or any (nested) sequence. If object is a scalar, a 0-dimensional array containing object is returned. dtype : data-type, optional The desired data-type for the array. If not given, NumPy will try to use a default dtype that can represent the values (by applying promotion rules when necessary.) copy : bool, optional If true (default), then the object is copied. Otherwise, a copy will only be made if __array__ returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy any of the other requirements (dtype, order, etc.). order : {'K', 'A', 'C', 'F'}, optional Specify the memory layout of the array. If object is not an array, the newly created array will be in C order (row major) unless 'F' is specified, in which case it will be in Fortran order (column major). If object is an array the following holds.

===== ========= ===================================================
order  no copy                     copy=True
===== ========= ===================================================
'K'   unchanged F & C order preserved, otherwise most similar order
'A'   unchanged F order if input is F and not C, otherwise C order
'C'   C order   C order
'F'   F order   F order
===== ========= ===================================================

When ``copy=False`` and a copy is made for other reasons, the result is
the same as if ``copy=True``, with some exceptions for 'A', see the
Notes section. The default order is 'K'.

subok : bool, optional If True, then sub-classes will be passed-through, otherwise the returned array will be forced to be a base-class array (default). ndmin : int, optional Specifies the minimum number of dimensions that the resulting array should have. Ones will be prepended to the shape as needed to meet this requirement. like : array_like, optional Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as like supports the __array_function__ protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.

.. versionadded:: 1.20.0

Returns

out : ndarray An array object satisfying the specified requirements.

See Also

empty_like : Return an empty array with shape and type of input. ones_like : Return an array of ones with shape and type of input. zeros_like : Return an array of zeros with shape and type of input. full_like : Return a new array with shape of input filled with value. empty : Return a new uninitialized array. ones : Return a new array setting values to one. zeros : Return a new array setting values to zero. full : Return a new array of given shape filled with value.

Notes

When order is 'A' and object is an array in neither 'C' nor 'F' order, and a copy is forced by a change in dtype, then the order of the result is not necessarily 'C' as expected. This is likely a bug.

Examples

>>> np.array([1, 2, 3])
array([1, 2, 3])

Upcasting:

np.array([1, 2, 3.0])
array([ 1.,  2.,  3.])

More than one dimension:

np.array([[1, 2], [3, 4]])
array([[1, 2],
       [3, 4]])

Minimum dimensions 2:

np.array([1, 2, 3], ndmin=2)
array([[1, 2, 3]])

Type provided:

np.array([1, 2, 3], dtype=complex)
array([ 1.+0.j,  2.+0.j,  3.+0.j])

Data-type consisting of more than one element:

x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')])
x['a']
array([1, 3])

Creating an array from sub-classes:

np.array(np.mat('1 2; 3 4'))
array([[1, 2],
       [3, 4]])
np.array(np.mat('1 2; 3 4'), subok=True)
matrix([[1, 2],
        [3, 4]])