Module: openfermion.transforms.repconversions


conversions module

fourier_transforms module: Fourier transforms on operators

operator_tapering module: Operations to remove qubits/spin orbitals from operators

qubit_operator_transforms module: Useful miscelaneous functions to transform QubitOperators

qubit_tapering_from_stabilizer module: Tools to reduce the number of terms and taper off qubits

weyl_ordering module: Weyl ordering on bosonic operators.


class StabilizerError: Stabilizer error class.


check_commuting_stabilizers(...): Auxiliary function checking that stabilizers commute.

check_stabilizer_linearity(...): Auxiliary function checking that stabilizers are linearly independent.

fix_single_term(...): Auxiliary function for term reductions.

fourier_transform(...): Apply Fourier transform to change hamiltonian in plane wave basis.

freeze_orbitals(...): Fix some orbitals to be occupied and others unoccupied.

get_diagonal_coulomb_hamiltonian(...): Convert a FermionOperator to a DiagonalCoulombHamiltonian.

get_interaction_operator(...): Convert a 2-body fermionic operator to InteractionOperator.

get_molecular_data(...): Output a MolecularData object generated from an InteractionOperator

get_quadratic_hamiltonian(...): Convert a quadratic fermionic operator to QuadraticHamiltonian.

inverse_fourier_transform(...): Apply inverse Fourier transform to change hamiltonian in

mccoy(...): Implement the McCoy formula on two operators of the

project_onto_sector(...): Remove qubit by projecting onto sector.

projection_error(...): Calculate the error from the project_onto_sector function.

prune_unused_indices(...): Remove indices that do not appear in any terms.

reduce_number_of_terms(...): Reduce the number of Pauli strings of operator using stabilizers.

rotate_qubit_by_pauli(...): Rotate qubit operator by exponential of Pauli.

symmetric_ordering(...): Apply the symmetric ordering to a BosonOperator or QuadOperator.

taper_off_qubits(...): Remove qubits from given operator.

weyl_polynomial_quantization(...): Apply the Weyl quantization to a phase space polynomial.