View source on GitHub |
Return symbolic representation of a BCS mean-field d-wave Hamiltonian.
openfermion.hamiltonians.mean_field_dwave(
x_dimension: int,
y_dimension: int,
tunneling: float,
sc_gap: float,
chemical_potential: Optional[float] = 0.0,
periodic: bool = True
) -> openfermion.ops.FermionOperator
Used in the notebooks
Used in the tutorials |
---|
The Hamiltonians of this model live on a grid of dimensions
x_dimension
x y_dimension
.
The grid can have periodic boundary conditions or not.
Each site on the grid can have an "up" fermion and a "down" fermion.
Therefore, there are a total of 2N
spin-orbitals,
where N = x_dimension * y_dimension
is the number of sites.
The Hamiltonian for this model has the form
$$ \begin{align} H = &- t \sum{\langle i,j \rangle} \sum\sigma (a^\dagger{i, \sigma} a{j, \sigma} + a^\dagger{j, \sigma} a{i, \sigma})
- \mu \sum_i \sum_{\sigma} a^\dagger_{i, \sigma} a_{i, \sigma}
\\
&- \sum_{\langle i,j \rangle} \Delta_{ij}
(a^\dagger_{i, \uparrow} a^\dagger_{j, \downarrow} -
a^\dagger_{i, \downarrow} a^\dagger_{j, \uparrow} +
a_{j, \downarrow} a_{i, \uparrow} -
a_{j, \uparrow} a_{i, \downarrow})
\end{align}
$$
where
- The indices \\(\langle i, j \rangle\\) run over pairs
\\(i\\) and \\(j\\) of sites that are connected to each other
in the grid
- \\(\sigma \in \{\uparrow, \downarrow\}\\) is the spin
- \\(t\\) is the tunneling amplitude
- \\(\Delta_{ij}\\) is equal to \\(+\Delta/2\\) for
horizontal edges and \\(-\Delta/2\\) for vertical edges,
where \\(\Delta\\) is the superconducting gap.
- \\(\mu\\) is the chemical potential
Returns | |
---|---|
mean_field_dwave_model
|
An instance of the FermionOperator class. |