View source on GitHub |
w0|110⟩⟨101| + w1|110⟩⟨011| + w2|101⟩⟨011|
+ h.c. interaction.
Inherits From: InteractionOperatorFermionicGate
, ParityPreservingFermionicGate
openfermion.circuits.CubicFermionicSimulationGate(
weights: Optional[Tuple[complex, ...]] = None,
absorb_exponent: bool = False,
exponent: cirq.TParamVal = 1.0,
global_shift: float = 0.0
) -> None
With weights \((w_0, w_1, w_2)\) and exponent \(t\), this gate's matrix is defined as
\[ e^{-i t H}, \]
where
\[ H = \left(w_0 \left| 110 \right\rangle\left\langle 101 \right| + \text{h.c.}\right) + \left(w_1 \left| 110 \right\rangle\left\langle 011 \right| + \text{h.c.}\right) + \left(w_2 \left| 101 \right\rangle\left\langle 011 \right| + \text{h.c.}\right) \]
This corresponds to the Jordan-Wigner transform of
\[ H = -\left(w_0 a^{\dagger}_i a^{\dagger}_{i+1} a_{i} a_{i+2} + \text{h.c.}\right) - \left(w_1 a^{\dagger}_i a^{\dagger}_{i+1} a_{i+1} a_{i+2} + \text{h.c.}\right) - \left(w_2 a^{\dagger}_i a^{\dagger}_{i+2} a_{i+1} a_{i+2} + \text{h.c.}\right), \]
where \(a_i\), \(a_{i+1}\), \(a_{i+2}\) are the annihilation operators for the fermionic modes \(i\), \((i+1)\) \((i+2)\), respectively mapped to the three qubits on which this gate acts.
Args | |
---|---|
weights
|
The weights of the terms in the Hamiltonian. |
Methods
absorb_exponent_into_weights
absorb_exponent_into_weights()
controlled
controlled(
num_controls: Optional[int] = None,
control_values: Optional[Union[cv.AbstractControlValues, Sequence[Union[int, Collection[int]]]]
] = None,
control_qid_shape: Optional[Tuple[int, ...]] = None
) -> 'Gate'
Returns a controlled version of this gate. If no arguments are specified, defaults to a single qubit control.
Args | |
---|---|
num_controls
|
Total number of control qubits. |
control_values
|
Which control computational basis state to apply the
sub gate. A sequence of length num_controls where each
entry is an integer (or set of integers) corresponding to the
computational basis state (or set of possible values) where that
control is enabled. When all controls are enabled, the sub gate is
applied. If unspecified, control values default to 1.
|
control_qid_shape
|
The qid shape of the controls. A tuple of the
expected dimension of each control qid. Defaults to
(2,) * num_controls . Specify this argument when using qudits.
|
Returns | |
---|---|
A cirq.Gate representing self controlled by the given control values
and qubits. This is a cirq.ControlledGate in the base
implementation, but subclasses may return a different gate type.
|
fermion_generator_components
@staticmethod
fermion_generator_components()
The FermionOperators \((G_i)_i\) such that the gate's fermionic generator is \(\sum_i w_i G_i + \text{h.c.}\) where \((w_i)_i\) are the gate's weights.
from_interaction_operator
@classmethod
from_interaction_operator( *, operator: 'openfermion.InteractionOperator', modes: Optional[Sequence[int]] = None ) -> Optional['CubicFermionicSimulationGate']
Constructs the gate corresponding to the specified term in the Hamiltonian.
fswap
fswap(
i: int
)
Update the weights of the gate to effect conjugation by an FSWAP on the i-th and (i+1)th qubits.
interaction_operator_generator
interaction_operator_generator(
*,
operator: Optional['openfermion.InteractionOperator'] = None,
modes: Optional[Sequence[int]] = None
) -> 'openfermion.InteractionOperator'
Constructs the Hamiltonian corresponding to the gate's generator.
num_qubits
num_qubits() -> int
The number of qubits this gate acts on.
num_weights
@classmethod
num_weights()
The number of parameters (weights) in the generator.
on
on(
*qubits
) -> 'Operation'
Returns an application of this gate to the given qubits.
Args | |
---|---|
*qubits
|
The collection of qubits to potentially apply the gate to. |
Returns: a cirq.Operation
which is this gate applied to the given
qubits.
on_each
on_each(
*targets
) -> List['cirq.Operation']
Returns a list of operations applying the gate to all targets.
Args | |
---|---|
*targets
|
The qubits to apply this gate to. For single-qubit gates
this can be provided as varargs or a combination of nested
iterables. For multi-qubit gates this must be provided as an
Iterable[Sequence[Qid]] , where each sequence has num_qubits
qubits.
|
Returns | |
---|---|
Operations applying this gate to the target qubits. |
Raises | |
---|---|
ValueError
|
If targets are not instances of Qid or Iterable[Qid]. If the gate qubit number is incompatible. |
TypeError
|
If a single target is supplied and it is not iterable. |
permute
permute(
init_pos: Sequence[int]
)
An in-place version of permuted.
permuted
permuted(
init_pos: Sequence[int]
)
Returns a gate with the Jordan-Wigner ordering changed.
If the Jordan-Wigner ordering of the original gate is given by init_pos, then the returned gate has Jordan-Wigner ordering (0, ..., n - 1), where n is the number of qubits on which the gate acts.
Args | |
---|---|
init_pos
|
A permutation of (0, ..., n - 1). |
validate_args
validate_args(
qubits: Sequence['cirq.Qid']
) -> None
Checks if this gate can be applied to the given qubits.
By default checks that:
- inputs are of type
Qid
- len(qubits) == num_qubits()
- qubit_i.dimension == qid_shape[i] for all qubits
Child classes can override. The child implementation should call
super().validate_args(qubits)
then do custom checks.
Args | |
---|---|
qubits
|
The sequence of qubits to potentially apply the gate to. |
Raises | |
---|---|
ValueError
|
The gate can't be applied to the qubits. |
wire_symbol
@classmethod
wire_symbol( use_unicode: bool )
The symbol to use in circuit diagrams.
with_probability
with_probability(
probability: 'cirq.TParamVal'
) -> 'cirq.Gate'
Creates a probabilistic channel with this gate.
Args | |
---|---|
probability
|
floating point value between 0 and 1, giving the probability this gate is applied. |
Returns | |
---|---|
cirq.RandomGateChannel that applies self with probability
probability and the identity with probability 1-p .
|
wrap_in_linear_combination
wrap_in_linear_combination(
coefficient: Union[complex, float, int] = 1
) -> 'cirq.LinearCombinationOfGates'
Returns a LinearCombinationOfGates with this gate.
Args | |
---|---|
coefficient
|
number coefficient to use in the resulting
cirq.LinearCombinationOfGates object.
|
Returns | |
---|---|
cirq.LinearCombinationOfGates containing self with a
coefficient of coefficient .
|
__add__
__add__(
other: Union['Gate', 'cirq.LinearCombinationOfGates']
) -> 'cirq.LinearCombinationOfGates'
__call__
__call__(
*qubits, **kwargs
)
Call self as a function.
__eq__
__eq__(
other: _SupportsValueEquality
) -> bool
__mul__
__mul__(
other: Union[complex, float, int]
) -> 'cirq.LinearCombinationOfGates'
__ne__
__ne__(
other: _SupportsValueEquality
) -> bool
__neg__
__neg__() -> 'cirq.LinearCombinationOfGates'
__pow__
__pow__(
exponent: Union[float, sympy.Symbol]
) -> 'EigenGate'
__rmul__
__rmul__(
other: Union[complex, float, int]
) -> 'cirq.LinearCombinationOfGates'
__sub__
__sub__(
other: Union['Gate', 'cirq.LinearCombinationOfGates']
) -> 'cirq.LinearCombinationOfGates'
__truediv__
__truediv__(
other: Union[complex, float, int]
) -> 'cirq.LinearCombinationOfGates'