![]() |
Modules
binary_codes
module: Pre-existing codes for Fermion-qubit mappings
bksf
module: bravyi_kitaev_fast transform on fermionic operators.
commutator_diagonal_coulomb_operator
module: Faster commutators for two-body operators with diagonal Coulomb terms.
conversions
module
fenwick_tree
module: Class to represent a Fenwick tree.
qubitoperator_to_paulisum
module
remove_symmetry_qubits
module: Module to remove two qubits from the problem space using conservation
term_reordering
module: Functions to reorder terms within SymbolicOperators
verstraete_cirac
module: Verstraete-Cirac transform on fermionic operators.
Classes
class FenwickNode
: Fenwick Tree node.
class FenwickTree
: Recursive implementation of the Fenwick tree.
Functions
binary_code_transform(...)
: Transforms a Hamiltonian written in fermionic basis into a Hamiltonian
bravyi_kitaev(...)
: Apply the Bravyi-Kitaev transform.
bravyi_kitaev_code(...)
: The Bravyi-Kitaev transform as binary code. The implementation
bravyi_kitaev_fast(...)
: Find the Pauli-representation of InteractionOperator for Bravyi-Kitaev
bravyi_kitaev_fast_edge_matrix(...)
: Use InteractionOperator to construct edge matrix required for the algorithm
bravyi_kitaev_fast_interaction_op(...)
: Transform from InteractionOperator to QubitOperator for Bravyi-Kitaev fast
bravyi_kitaev_tree(...)
: Apply the "tree" Bravyi-Kitaev transform.
check_no_sympy(...)
: Checks whether a SymbolicOperator contains any
checksum_code(...)
: Checksum code for either even or odd Hamming weight. The Hamming weight
chemist_ordered(...)
: Puts a two-body fermion operator in chemist ordering.
commutator_ordered_diagonal_coulomb_with_two_body_operator(...)
: Compute the commutator of two-body operators provided that both are
dissolve(...)
: Decomposition helper. Takes a product of binary variables
edge_operator_aij(...)
: Calculate the edge operator A_ij. The definitions used here are
edge_operator_b(...)
: Calculate the edge operator B_i. The definitions used here are
edit_hamiltonian_for_spin(...)
: Removes the Z terms acting on the orbital from the Hamiltonian.
extractor(...)
: Applies the extraction superoperator to a binary expression
generate_fermions(...)
: The QubitOperator for generating fermions in bravyi_kitaev_fast
get_boson_operator(...)
: Convert to BosonOperator.
get_fermion_operator(...)
: Convert to FermionOperator.
get_majorana_operator(...)
: Convert to MajoranaOperator.
get_quad_operator(...)
: Convert to QuadOperator.
inline_product(...)
: Computes a product, using the imul operator.
inline_sum(...)
: Computes a sum, using the iadd operator.
interleaved_code(...)
: Linear code that reorders orbitals from even-odd to up-then-down.
jordan_wigner(...)
: Apply the Jordan-Wigner transform to a FermionOperator,
jordan_wigner_code(...)
: The Jordan-Wigner transform as binary code.
jordan_wigner_one_body(...)
: Map the term a^\dagger_p a_q + h.c. to QubitOperator.
jordan_wigner_two_body(...)
: Map the term a^\dagger_p a^\dagger_q a_r a_s + h.c. to QubitOperator.
linearize_decoder(...)
: Outputs linear decoding function from input matrix
make_parity_list(...)
: Create the parity list from the decoder of the input code.
normal_ordered(...)
: Compute and return the normal ordered form of a FermionOperator,
normal_ordered_ladder_term(...)
: Return a normal ordered FermionOperator or BosonOperator corresponding
normal_ordered_quad_term(...)
: Return a normal ordered QuadOperator corresponding to single term.
number_operator(...)
: Find the qubit operator for the number operator in bravyi_kitaev_fast
parity_code(...)
: The parity transform (arXiv:1208.5986) as binary code. This code is
qubit_operator_to_pauli_sum(...)
: Convert QubitOperator to a sum of PauliString.
reorder(...)
: Changes the ladder operator order of the Hamiltonian based on the
reverse_jordan_wigner(...)
: Transforms a QubitOperator into a FermionOperator using the
symmetry_conserving_bravyi_kitaev(...)
: Returns the qubit Hamiltonian for the fermionic Hamiltonian
vacuum_operator(...)
: Use the stabilizers to find the vacuum state in bravyi_kitaev_fast.
verstraete_cirac_2d_square(...)
: Apply the Verstraete-Cirac transform on a 2-d square lattice.
vertical_edges_snake(...)
: Obtain the vertical edges in the 2-d snake ordering.
weight_one_binary_addressing_code(...)
: Weight-1 binary addressing code (arXiv:1712.07067). This highly
weight_one_segment_code(...)
: Weight-1 segment code (arXiv:1712.07067). Outputs a 3-mode, 2-qubit
weight_two_segment_code(...)
: Weight-2 segment code (arXiv:1712.07067). Outputs a 5-mode, 4-qubit