openfermion.circuits.InteractionOperatorFermionicGate

The Jordan-Wigner transform of :math:\exp(-i H) for a fermionic

Inherits From: ParityPreservingFermionicGate

Hamiltonian :math:H, where :math:H is an interaction operator.

See openfermion.ParityPreservingFermionicGate and openfermion.InteractionOperator for more details.

weights The weights of the terms in the Hamiltonian.
absorb_exponent Whether to absorb the given exponent into the weights. If true, the exponent of the return gate is 1. Defaults to False.

fermion_generator The FermionOperator G such that the gate's unitary is exp(-i t G) with exponent t using the Jordan-Wigner transformation.
qubit_generator_matrix The matrix G such that the gate's unitary is exp(-i t G) with exponent t.

Methods

absorb_exponent_into_weights

View source

controlled

Returns a controlled version of this gate. If no arguments are specified, defaults to a single qubit control.

num_controls: Total number of control qubits. control_values: For which control qubit values to apply the sub gate. A sequence of length num_controls where each entry is an integer (or set of integers) corresponding to the qubit value (or set of possible values) where that control is enabled. When all controls are enabled, the sub gate is applied. If unspecified, control values default to 1. control_qid_shape: The qid shape of the controls. A tuple of the expected dimension of each control qid. Defaults to (2,) * num_controls. Specify this argument when using qudits.

fermion_generator_components

View source

The FermionOperators :math:(G_i)_i such that the gate's fermionic generator is :math:\sum_i w_i G_i + \text{h.c.} where :math:(w_i)_i are the gate's weights.

from_interaction_operator

View source

Constructs the gate corresponding to the specified term in the Hamiltonian.

fswap

View source

Update the weights of the gate to effect conjugation by an FSWAP on the i-th and (i+1)th qubits.

interaction_operator_generator

View source

Constructs the Hamiltonian corresponding to the gate's generator.

num_qubits

The number of qubits this gate acts on.

num_weights

View source

The number of parameters (weights) in the generator.

on

Returns an application of this gate to the given qubits.

Args
*qubits The collection of qubits to potentially apply the gate to.

permute

View source

An in-place version of permuted.

permuted

View source

Returns a gate with the Jordan-Wigner ordering changed.

If the Jordan-Wigner ordering of the original gate is given by init_pos, then the returned gate has Jordan-Wigner ordering (0, ..., n - 1), where n is the number of qubits on which the gate acts.

Args
init_pos A permutation of (0, ..., n - 1).

validate_args

Checks if this gate can be applied to the given qubits.

By default checks that:

  • inputs are of type Qid
  • len(qubits) == num_qubits()
  • qubit_i.dimension == qid_shape[i] for all qubits

Child classes can override. The child implementation should call super().validate_args(qubits) then do custom checks.

Args
qubits The sequence of qubits to potentially apply the gate to.

Throws:

  • ValueError: The gate can't be applied to the qubits.

wire_symbol

View source

The symbol to use in circuit diagrams.

with_probability

wrap_in_linear_combination

__add__

__call__

Call self as a function.

__eq__

__mul__

__ne__

__neg__

__pow__

__rmul__

__sub__

__truediv__