View source on GitHub |
An immutable string of Paulis, like XIXY
, with a coefficient.
Inherits From: BaseDensePauliString
, Gate
cirq.DensePauliString(
pauli_mask: Union[Iterable['cirq.PAULI_GATE_LIKE'], np.ndarray],
*,
coefficient: 'cirq.TParamValComplex' = 1
)
A DensePauliString
represents a multi-qubit pauli operator, i.e. a tensor product of single
qubits Pauli gates (including the cirq.IdentityGate
), each of which would act on a
different qubit. When applied on qubits, a DensePauliString
results in cirq.PauliString
as an operation.
Note that cirq.PauliString
only stores a tensor product of non-identity cirq.Pauli
operations whereas cirq.DensePauliString
also supports storing the cirq.IdentityGate
.
For example,
dps = cirq.DensePauliString('XXIY')
print(dps) # 4 qubit pauli operator with 'X' on first 2 qubits, 'I' on 3rd and 'Y' on 4th.
+XXIY
ps = dps.on(*cirq.LineQubit.range(4)) # When applied on qubits, we get a `cirq.PauliString`.
print(ps) # Note that `cirq.PauliString` only preserves non-identity operations.
X(q(0))*X(q(1))*Y(q(3))
This can optionally take a coefficient, for example:
dps = cirq.DensePauliString("XX", coefficient=3)
print(dps) # Represents 3 times the operator XX acting on two qubits.
(3+0j)*XX
print(dps.on(*cirq.LineQubit.range(2))) # Coefficient is propagated to `cirq.PauliString`.
(3+0j)*X(q(0))*X(q(1))
If the coefficient has magnitude of 1, the resulting operator is a unitary and thus is
also a cirq.Gate
.
Note that DensePauliString
is an immutable object. If you need a mutable version of
dense pauli strings, see cirq.MutableDensePauliString
.
Attributes | |
---|---|
coefficient
|
A complex coefficient or symbol. |
pauli_mask
|
A 1-dimensional uint8 numpy array giving a specification of Pauli gates to use. |
Methods
controlled
controlled(
num_controls: Optional[int] = None,
control_values: Optional[Union[cv.AbstractControlValues, Sequence[Union[int, Collection[int]]]]
] = None,
control_qid_shape: Optional[Tuple[int, ...]] = None
) -> 'Gate'
Returns a controlled version of this gate. If no arguments are specified, defaults to a single qubit control.
Args | |
---|---|
num_controls
|
Total number of control qubits. |
control_values
|
Which control computational basis state to apply the
sub gate. A sequence of length num_controls where each
entry is an integer (or set of integers) corresponding to the
computational basis state (or set of possible values) where that
control is enabled. When all controls are enabled, the sub gate is
applied. If unspecified, control values default to 1.
|
control_qid_shape
|
The qid shape of the controls. A tuple of the
expected dimension of each control qid. Defaults to
(2,) * num_controls . Specify this argument when using qudits.
|
Returns | |
---|---|
A cirq.Gate representing self controlled by the given control values
and qubits. This is a cirq.ControlledGate in the base
implementation, but subclasses may return a different gate type.
|
copy
copy(
coefficient: Optional[Union[sympy.Expr, int, float, complex]] = None,
pauli_mask: Union[None, str, Iterable[int], np.ndarray] = None
) -> 'DensePauliString'
Returns a copy with possibly modified contents.
Args | |
---|---|
coefficient
|
The new coefficient value. If not specified, defaults
to the current coefficient value.
|
pauli_mask
|
The new pauli_mask value. If not specified, defaults
to the current pauli mask value.
|
Returns | |
---|---|
A copied instance. |
eye
@classmethod
eye( length: int ) -> Self
Creates a dense pauli string containing only identity gates.
Args | |
---|---|
length
|
The length of the dense pauli string. |
frozen
frozen() -> 'DensePauliString'
A cirq.DensePauliString
with the same contents.
mutable_copy
mutable_copy() -> 'MutableDensePauliString'
A cirq.MutableDensePauliString
with the same contents.
num_qubits
num_qubits() -> int
The number of qubits this gate acts on.
on
on(
*qubits
) -> 'cirq.PauliString'
Returns an application of this gate to the given qubits.
Args | |
---|---|
*qubits
|
The collection of qubits to potentially apply the gate to. |
Returns: a cirq.Operation
which is this gate applied to the given
qubits.
on_each
on_each(
*targets
) -> List['cirq.Operation']
Returns a list of operations applying the gate to all targets.
Args | |
---|---|
*targets
|
The qubits to apply this gate to. For single-qubit gates
this can be provided as varargs or a combination of nested
iterables. For multi-qubit gates this must be provided as an
Iterable[Sequence[Qid]] , where each sequence has num_qubits
qubits.
|
Returns | |
---|---|
Operations applying this gate to the target qubits. |
Raises | |
---|---|
ValueError
|
If targets are not instances of Qid or Iterable[Qid]. If the gate qubit number is incompatible. |
TypeError
|
If a single target is supplied and it is not iterable. |
one_hot
@classmethod
one_hot( *, index: int, length: int, pauli: 'cirq.PAULI_GATE_LIKE' ) -> Self
Creates a dense pauli string with only one non-identity Pauli.
Args | |
---|---|
index
|
The index of the Pauli that is not an identity. |
length
|
The total length of the string to create. |
pauli
|
The pauli gate to put at the hot index. Can be set to either
a string ('X', 'Y', 'Z', 'I'), a cirq gate (cirq.X ,
cirq.Y , cirq.Z , or cirq.I ), or an integer (0=I, 1=X, 2=Y,
3=Z).
|
sparse
sparse(
qubits: Optional[Sequence['cirq.Qid']] = None
) -> 'cirq.PauliString'
A cirq.PauliString
version of this dense pauli string.
Args | |
---|---|
qubits
|
The qubits to apply the Paulis to. Defaults to
cirq.LineQubit.range(len(self)) .
|
Returns | |
---|---|
A cirq.PauliString with the non-identity operations from
this dense pauli string applied to appropriate qubits.
|
Raises | |
---|---|
ValueError
|
If the number of qubits supplied does not match that of this instance. |
tensor_product
tensor_product(
other: 'BaseDensePauliString'
) -> Self
Concatenates dense pauli strings and multiplies their coefficients.
Args | |
---|---|
other
|
The dense pauli string to place after the end of this one. |
Returns | |
---|---|
A dense pauli string with the concatenation of the paulis from the two input pauli strings, and the product of their coefficients. |
validate_args
validate_args(
qubits: Sequence['cirq.Qid']
) -> None
Checks if this gate can be applied to the given qubits.
By default checks that:
- inputs are of type
Qid
- len(qubits) == num_qubits()
- qubit_i.dimension == qid_shape[i] for all qubits
Child classes can override. The child implementation should call
super().validate_args(qubits)
then do custom checks.
Args | |
---|---|
qubits
|
The sequence of qubits to potentially apply the gate to. |
Raises | |
---|---|
ValueError
|
The gate can't be applied to the qubits. |
with_probability
with_probability(
probability: 'cirq.TParamVal'
) -> 'cirq.Gate'
Creates a probabilistic channel with this gate.
Args | |
---|---|
probability
|
floating point value between 0 and 1, giving the probability this gate is applied. |
Returns | |
---|---|
cirq.RandomGateChannel that applies self with probability
probability and the identity with probability 1-p .
|
wrap_in_linear_combination
wrap_in_linear_combination(
coefficient: Union[complex, float, int] = 1
) -> 'cirq.LinearCombinationOfGates'
Returns a LinearCombinationOfGates with this gate.
Args | |
---|---|
coefficient
|
number coefficient to use in the resulting
cirq.LinearCombinationOfGates object.
|
Returns | |
---|---|
cirq.LinearCombinationOfGates containing self with a
coefficient of coefficient .
|
__abs__
__abs__() -> Self
__add__
__add__(
other: Union['Gate', 'cirq.LinearCombinationOfGates']
) -> 'cirq.LinearCombinationOfGates'
__call__
__call__(
*qubits, **kwargs
)
Call self as a function.
__eq__
__eq__(
other: _SupportsValueEquality
) -> bool
__getitem__
__getitem__(
item
)
__iter__
__iter__() -> Iterator[Union['cirq.Pauli', 'cirq.IdentityGate']]
__len__
__len__() -> int
__mul__
__mul__(
other
)
__ne__
__ne__(
other: _SupportsValueEquality
) -> bool
__neg__
__neg__()
__pos__
__pos__()
__pow__
__pow__(
power: Union[int, float]
) -> Union[NotImplementedType, Self]
__rmul__
__rmul__(
other
)
__sub__
__sub__(
other: Union['Gate', 'cirq.LinearCombinationOfGates']
) -> 'cirq.LinearCombinationOfGates'
__truediv__
__truediv__(
other
)
Class Variables | |
---|---|
I_VAL |
0
|
X_VAL |
1
|
Y_VAL |
2
|
Z_VAL |
3
|