View source on GitHub |
Returns the unique Choi matrix associated with an operation .
cirq.operation_to_choi(
operation: 'protocols.SupportsKraus'
) -> np.ndarray
Choi matrix J(E) of a linear map E: L(H1) -> L(H2) which takes linear operators on Hilbert space H1 to linear operators on Hilbert space H2 is defined as
$$
J(E) = (E \otimes I)(|\phi\rangle\langle\phi|)
$$
where \(|\phi\rangle = \sum_i|i\rangle|i\rangle\) is the unnormalized maximally entangled state and I: L(H1) -> L(H1) is the identity map. Note that J(E) is a square matrix with d1*d2 rows and columns where d1 = dim H1 and d2 = dim H2.
Args | |
---|---|
operation
|
Quantum channel. |
Returns | |
---|---|
Choi matrix corresponding to operation. |