We're celebrating World Quantum Day 2022! Join us

cirq.ops.PauliStringPhasorGate

A gate that phases the eigenstates of a Pauli string.

Inherits From: Gate

The -1 eigenstates of the Pauli string will have their amplitude multiplied by e^(i pi exponent_neg) while +1 eigenstates of the Pauli string will have their amplitude multiplied by e^(i pi exponent_pos).

dense_pauli_string The DensePauliString defining the positive and negative eigenspaces that will be independently phased.
exponent_neg How much to phase vectors in the negative eigenspace, in the form of the t in (-1)t = exp(i pi t).
exponent_pos How much to phase vectors in the positive eigenspace, in the form of the t in (-1)t = exp(i pi t).

ValueError If coefficient is not 1 or -1.

dense_pauli_string The underlying DensePauliString.
exponent_neg The negative exponent.
exponent_pos The positive exponent.
exponent_relative The relative exponent between negative and positive exponents.

Methods

controlled

View source

Returns a controlled version of this gate. If no arguments are specified, defaults to a single qubit control.

num_controls: Total number of control qubits. control_values: For which control qubit values to apply the sub gate. A sequence of length num_controls where each entry is an integer (or set of integers) corresponding to the qubit value (or set of possible values) where that control is enabled. When all controls are enabled, the sub gate is applied. If unspecified, control values default to 1. control_qid_shape: The qid shape of the controls. A tuple of the expected dimension of each control qid. Defaults to (2,) * num_controls. Specify this argument when using qudits.

equal_up_to_global_phase

View source

Checks equality of two PauliStringPhasors, up to global phase.

num_qubits

View source

The number of qubits for the gate.

on

View source

Creates a PauliStringPhasor on the qubits.

on_each

View source

Returns a list of operations applying the gate to all targets.

Args
*targets The qubits to apply this gate to. For single-qubit gates this can be provided as varargs or a combination of nested iterables. For multi-qubit gates this must be provided as an Iterable[Sequence[Qid]], where each sequence has num_qubits qubits.

Returns
Operations applying this gate to the target qubits.

Raises
ValueError If targets are not instances of Qid or Iterable[Qid]. If the gate qubit number is incompatible.
TypeError If a single target is supplied and it is not iterable.

validate_args

View source

Checks if this gate can be applied to the given qubits.

By default checks that:

  • inputs are of type Qid
  • len(qubits) == num_qubits()
  • qubit_i.dimension == qid_shape[i] for all qubits

Child classes can override. The child implementation should call super().validate_args(qubits) then do custom checks.

Args
qubits The sequence of qubits to potentially apply the gate to.

Throws:

  • ValueError: The gate can't be applied to the qubits.

with_probability

View source

wrap_in_linear_combination

View source

__add__

View source

__call__

View source

Call self as a function.

__eq__

View source

__mul__

View source

__ne__

View source

__neg__

View source

__pow__

View source

__rmul__

View source

__sub__

View source

__truediv__

View source