![]() |
A doubly-controlled-Z that can be raised to a power.
Inherits From: EigenGate
, ThreeQubitGate
, Gate
, InterchangeableQubitsGate
cirq.ops.CCZPowGate(
*,
exponent: cirq.value.TParamVal
= 1.0,
global_shift: float = 0.0
) -> None
The matrix of CCZ**t
is diag(1, 1, 1, 1, 1, 1, 1, exp(i pi t))
.
Args | |
---|---|
exponent
|
The t in gate**t. Determines how much the eigenvalues of
the gate are scaled by. For example, eigenvectors phased by -1
when gate**1 is applied will gain a relative phase of
e^{i pi exponent} when gate**exponent is applied (relative to
eigenvectors unaffected by gate**1 ).
|
global_shift
|
Offsets the eigenvalues of the gate at exponent=1.
In effect, this controls a global phase factor on the gate's
unitary matrix. The factor is:
exp(i * pi * global_shift * exponent) For example, |
Attributes | |
---|---|
exponent
|
|
global_shift
|
Methods
controlled
controlled(
num_controls: int = None,
control_values: Optional[Sequence[Union[int, Collection[int]]]] = None,
control_qid_shape: Optional[Tuple[int, ...]] = None
) -> "Gate"
Returns a controlled version of this gate. If no arguments are specified, defaults to a single qubit control.
num_controls: Total number of control qubits.
control_values: For which control qubit values to apply the sub
gate. A sequence of length num_controls
where each
entry is an integer (or set of integers) corresponding to the
qubit value (or set of possible values) where that control is
enabled. When all controls are enabled, the sub gate is
applied. If unspecified, control values default to 1.
control_qid_shape: The qid shape of the controls. A tuple of the
expected dimension of each control qid. Defaults to
(2,) * num_controls
. Specify this argument when using qudits.
num_qubits
num_qubits() -> int
The number of qubits this gate acts on.
on
on(
*qubits
) -> "Operation"
Returns an application of this gate to the given qubits.
Args | |
---|---|
*qubits
|
The collection of qubits to potentially apply the gate to. |
qubit_index_to_equivalence_group_key
qubit_index_to_equivalence_group_key(
index: int
) -> int
Returns a key that differs between non-interchangeable qubits.
validate_args
validate_args(
qubits: Sequence['cirq.Qid']
) -> None
Checks if this gate can be applied to the given qubits.
By default checks that:
- inputs are of type
Qid
- len(qubits) == num_qubits()
- qubit_i.dimension == qid_shape[i] for all qubits
Child classes can override. The child implementation should call
super().validate_args(qubits)
then do custom checks.
Args | |
---|---|
qubits
|
The sequence of qubits to potentially apply the gate to. |
Throws:
ValueError
: The gate can't be applied to the qubits.
with_probability
with_probability(
probability: "cirq.TParamVal"
) -> "cirq.Gate"
wrap_in_linear_combination
wrap_in_linear_combination(
coefficient: Union[complex, float, int] = 1
) -> "cirq.LinearCombinationOfGates"
__add__
__add__(
other: Union['Gate', 'cirq.LinearCombinationOfGates']
) -> "cirq.LinearCombinationOfGates"
__call__
__call__(
*args, **kwargs
)
Call self as a function.
__eq__
__eq__(
other: _SupportsValueEquality
) -> bool
__mul__
__mul__(
other: Union[complex, float, int]
) -> "cirq.LinearCombinationOfGates"
__ne__
__ne__(
other: _SupportsValueEquality
) -> bool
__neg__
__neg__() -> "cirq.LinearCombinationOfGates"
__pow__
__pow__(
exponent: Union[float, sympy.Symbol]
) -> "EigenGate"
__rmul__
__rmul__(
other: Union[complex, float, int]
) -> "cirq.LinearCombinationOfGates"
__sub__
__sub__(
other: Union['Gate', 'cirq.LinearCombinationOfGates']
) -> "cirq.LinearCombinationOfGates"
__truediv__
__truediv__(
other: Union[complex, float, int]
) -> "cirq.LinearCombinationOfGates"